Process Automation for Discrete Manufacturing Excellence PADME

Mikael Rudin, Digital Strategy and Architecture ABB

20191002

Content

- Industry problem
 - General
 - Interview results
 - Specific to robotic factory
- Available system solutions
 - System for collaboration support
- Solution
 - Description
 - Results (800xA integrations, visualization)

Industry Challenges

Industry 3.0

People, Systems and Equipment Collaboration

Questionaire to measure digital maturity

System to System Questions about how well systems are connected /integrated.

Equipment to Equipment

Questions about how well equipment is connected other equipment

System to Equipment Questions about how well systems are connected/integrated to the equipment

Equipment to People Questions about how well equipment are collaborating with people

System to People Questions about how well systems collaborate with people

People to People

Questions about how well people collaborate with other people

Plot of Digital maturity

Each question can be answered with a rating from 1 - 4

1 = not implemented

4 = fully implemented

The average in each dimension leads to a diagram to visualize the results.

Note: For the background interviews the interviewer made the rating based on the answers received. Within the report the information gained from the interviews were summarised according the dimensions to fulfil the need to gain background knowledge and identify potential use-cases.

Equipment to Equipment

Comparison -> Digital Collaboration Profiles

Collaboration values of Automation Systems

PADME – Test Bed Objectives - Test Bed for the Smart Digital Factory

- Arena
 - The Production Line for the assembly of medium and large size Robots at ABB Robotics in Västerås
- Target
 - Decrease throughput times by 50% and level production through increased automation and digitalization
- Technical Solution
 - Create a digital twin of the processes (model the factory in 800xA system) with real-time information from the process
 - Implement applications to optimize operations

ABB Robotics - Manufacturing of a Robot

Discrete manufacturing comprises of separate production units where each unit delivers part of the final product The manufacturing process is often divided in smaller steps called sequences Each production unit is often a combination of manual and automatic sequences Each production unit follows a production recipe, which is a set of sequences in a specific order mandated by design Process controller within production unit:

- Often a controller exists within a production unit to control the execution of sequences
- There may exist production units that are fully manual and there is no controller within those sections

Assembly requires system collaboration

Automated Guided Vehicle (AGV)

PADME use case: System Integration

Manufacturing line **Digital Twin model**

🖃 🔛 Axis 6

PADME Systems Topology

АВВ				ABB Manufacturing Super	vision					
Production Pr	oduct Information	System Information				1	Emergency Stop	12:55	1 8	mergen
< Ax1&2	Order Number 1236-146 Product IRC5	5 46 Туре Туре А	BOM 1234-12364	Recipe 1234-12364	Time Loaded 12:55 Monday					

Image taken

ACTIVITY LOG

VISION SYSTEM TASK 1 DETAILS

		ACTIVITY TYPE	START TIME	END TIME	DURATION	
	WS10	Bolt Axis 1 gearbox on foot	12:50:12	12:51:50	90s	>
~	WS10	Vision system task 1	12:51:50	12:55:56	20s	>
	WS10	Bolt Axis 1 gearbox in stand	12:56:21	12:59:26	80s	>
	WS10	Vision system task 2	12:59:26	12:59:26	10s	>
	WS10	Bolt Axis 1 motor	12:59:26	12:59:26	20s	>
	WS20	Vision system	12:59:26	12:59:26	10s	>
	WS20	Bolt Axis 2 gearbox	12:59:26	12:59:26	20s	>
	WS20	Manual Ack	12:59:26	12:59:26	200s	>
	WS20	Bolt Axis 2 cover	13:55:46	N/A	Working	
	WS20	Vision	12:59:26			

Reference Image

BOLT AXIS 1 MOTOR DETAILS

		ACTIVITY TYPE	START TIME	END TIME	DURATION	
	WS10	Bolt Axis 1 gearbox on foot	12:50:12	12:51:50	90s	>
	WS10	Vision system task 1	12:51:50	12:55:56	20s	>
	WS10	Bolt Axis 1 gearbox in stand	12:56:21	12:59:26	80s	>
	WS10	Vision system task 2	12:59:26	12:59:26	10s	>
~	WS10	Bolt Axis 1 motor	12:59:26	12:59:26	20s	>
	WS20	Vision system	12:59:26	12:59:26	10s	>
	WS20	Bolt Axis 2 gearbox	12:59:26	12:59:26	20s	>
	WS20	Manual Ack	12:59:26	12:59:26	200s	>
	WS20	Bolt Axis 2 cover	13:55:46	N/A	Working	
	WS20	Vision	12:59:26			

Bolt Axis 1 Torque

Duration for each bolt tightening

Bolt Axis 1 Error report

BOLT	٠	FINAL TORQUE	RETRIES	Set Ok By
4		20	4	Operator
5		20	4	System

Collaboration values of PADME Solution

- Improvement areas
 - People System
 - One environment with information from several systems
 - People People
 - Visualization distributed to more persons
 - People Equipment
 - More detailed information available through OPC-UA

Equipment-Equipment

PADME partners

Contributions per partner

L21 POWERFUL EXECUTION	LEVEL21 Level21 contributes with expertise in discrete manufacturing and ensure that selected solutions are of business value.	MÄLARDALENS HÖGSKOLA ESKILSTUNA VÄSTERÅS	MDH MDH will analyze digitalization maturity with respect to the possibility to build on CPAS logic in discrete manufacturing
RI SE	RISE-SICS SICS is responsible for the optimization models aiming at minimizing the cycle time, and monitoring and controlling the workstations' operations to ensure consistent performance.	ABB	ABB ABB Process Industries is the main provider of technologies and expertise on IoT system architecture. ABB Robotics provides the testbed as such and expertise in discrete manufacturing.

People, Systems and Equipment Collaboration

Besök oss gärna på produktion2030.se

