
Introduction: 

The simulation part of the PADME project was set out to aid in reducing the production cycle time at the 

robotic factory at ABB. Moreover, we aimed to connect the simulation model to live streams of data from 

the factory floor, to enable real-time control and adjustments to planned production based on new 

information. The latter is known as a dynamic simulation model or a digital twin.  

Several simulation environments were explored, including ABB’s own simulation system, but we 

concluded that utilizing the full potential of any simulation system required more data than available. 

Hence, we focused on reducing the cycle time by improving the scheduling process of incoming jobs. 

Improving the scheduling process: 

The current scheduling process relies on a heuristic approach that accounts for material availability, 

current products being produced, due dates, and machine failures to name a few. The scheduling process 

also assumes a fixed takt time to process different products on different machines or workstations. This 

assumption reduces the blockage and starvation phenomena that occurs on a serial production line with 

different processing times. It also allows products to move in a synchronized fashion resulting in a 

seemingly steady throughput. We wanted to investigate if the cycle time can be reduced if we schedule 

the jobs in a structured manner, using mathematical programming.  

A mathematical model for job sequencing: 

The mathematical model represents the following scenario: a number of 𝑛 jobs 𝑗 = 1,2, … , 𝑛 are to be 

sequenced on a number of 𝑚 machines 𝑘 = 1,2, … , 𝑚. Each job has a specific sequence, or route, to 

follow 𝑟𝑗 that specifies the order of machines to visit. Each job has a deterministic processing time on each 

machine 𝑝𝑗,𝑘. Each machine has a capacity of 1 and can process one job at a time. We do not allow a job 

to move ahead of another job even if the target machine is available. We also do not allow any buffer 

space between machines.  

Parameters: 

Parameter Representation  
𝑝𝑗,𝑘 A deterministic processing time of job 𝑗 on machine 𝑘 

𝑟𝑗 A sequence of machines that job 𝑗 must visit 

List of jobs A number of 𝑛 jobs 𝑗 = 1,2, … , 𝑛 to sequence 

List of machines A number of 𝑚 machines 𝑘 = 1,2, … , 𝑚 to process the jobs 

 

Decision variables: 

Variable Type and domain Representation 

𝑠𝑗,𝑘  

∀𝑗, 𝑘 

Continuous 
[Earliest start time, 
latest finish time] 

start time of job 𝑗 on machine 𝑘. 
Note that since 𝑝𝑗,𝑘 are all deterministic, the domain for 

variable cab be reduced to [𝐸𝑆𝑇, 𝐿𝐹𝑇] 

𝑦𝑘,𝑗,𝑗′   

∀𝑗, 𝑘; 𝑗 ≠ 𝑗′ 

Binary 
{0,1} 

a binary variable that is equal to 1 if job 𝑗 is to be processed 
before job 𝑗’ on machine 𝑘. 



Note that since we do not allow for buffers or one job taking 
over another, the sequence of jobs that go into the first 

machine should be maintained throughout the entire route 𝑟𝑗. 

𝑓 Continuous  
≥ 0 

The makespan time, or the finish time of the last job to be 
produced. It is used in the objective function. 

 

Constraints: 

1. Precedence constraints: jobs must follow their specified routes; that is, if for job 𝑗 we have machine 

𝑘 preceding machine 𝑘’ (𝑘 < 𝑘′), then j must start and finish on 𝑘 immediately before it starts on 𝑘’. 

Note that the word immediately implies that there is no buffer space between succeeding machines.  

𝑠𝑗,𝑘 + 𝑝𝑗,𝑘 = 𝑠𝑗,𝑘′  ∀𝑗, 𝑘 

2. Capacity constraints: each machine can process only one job at a time; that is, if two jobs 𝑗 and 𝑗’ 

compete for machine 𝑘, then either 𝑗 starts and finishes before 𝑗’ starts, or vice versa.  

𝑠𝑗,𝑘 + 𝑝𝑗,𝑘 ≤ 𝑠𝑗′ ,𝑘 + 𝑀1(1 − 𝑦𝑘,𝑗,𝑗′) ∀𝑗, 𝑘 

𝑠𝑗′,𝑘 + 𝑝𝑗′ ,𝑘 ≤ 𝑠𝑗,𝑘 + 𝑀2(𝑦𝑘,𝑗,𝑗′) ∀𝑗, 𝑘 

Where 𝑀1and 𝑀2 are numbers large enough to dominate the constraints. Recommended values are 

𝑀1 = 𝐿𝐹𝑇𝑗 − 𝐸𝑆𝑇𝑗′  

𝑀2 = 𝐿𝐹𝑇𝑗′ − 𝐸𝑆𝑇𝑗  

Where the Latest Finish Time and the Earliest Start Time are derived from the deterministic durations. 

3. Fixed sequence constraints: jobs must maintain the same order on all machines; that is, if job 𝑗 is 

sequenced before 𝑗′ on the first machine that they both use, 𝑘 = 1 in this case, then they must 

maintain that order on all subsequent machines they visit along their routes. 

𝑦1,𝑗,𝑗′ = 𝑦𝑘,𝑗,𝑗′  ∀𝑘 > 1; 𝑘 ∈ 𝑟𝑗 

4. Variable constraints: 

𝐸𝑆𝑇 ≤ 𝑠𝑗,𝑘 ≤ 𝐿𝐹𝑇 

𝑦𝑘,𝑗,𝑗′ = {0,1} 

Objective function: 

The objective is to minimize the makespan time, which is the finish time of the last job produced.  

𝑚𝑖𝑛. 𝑓 

𝑓 ≥ 𝑠𝑗,𝑘 + 𝑝𝑗,𝑘 ∀𝑗; 𝑘 = 𝑘𝑙𝑎𝑠𝑡  

Where 𝑘𝑙𝑎𝑠𝑡is the last machine job 𝑗 visits in its route. 

 



Experiments and results: 

1. Cycle time reduction: 

 

1.1. Experimental setup: 

To assess whether the proposed model can produce a shorter cycle time, we collected data from 

different work weeks showing batches of products to be produced, and the sequence in which 

they were dispatched to the shop floor. We refer to this as the basic sequence 𝑠𝑒𝑞𝑏𝑎𝑠𝑖𝑐. Since 

the real makespan time depends on process randomness and distributions that occurred during 

production, we cannot compare it to the result from the model; however, we can use the model 

to calculate the makespan time if jobs were dispatched according to 𝑠𝑒𝑞𝑏𝑎𝑠𝑖𝑐 and compare it to 

the optimal makespan time and the optimal job sequence 𝑠𝑒𝑞𝑜𝑝𝑡 . Production mixes from 6 

different weeks were collected. Each week was considered as an instance of the problem. 

 

1.2. Results: 

The results in Table 1 show scheduling jobs using a mathematical model that minimizes the 

makspane time, compared to scheduling them heuristically, as is done right now. Each record 

represents 12 jobs that were produced on different dates, along with its makespan time. Clearly, 

a mathematical model approach to scheduling is superior in all cases, especially that the search 

algorithm terminated when reaching optimal solutions.  

Table 1: makespan time reduction using optimal job dispatching compared to heuristic dispatching 

Instance Makespan (min) with optimal dispatching Makespan (min) with heuristic dispatching 

19-03-19 446 598 

21-03-19 449 577 

28-03-19 438 493 

01-04-19 440 522 

02-04-19 266 364 

 

Another measure of interest is the utilization of machines for a given scheduling solution. Though 

this is not the objective for either scheduling methods, it is worth noting how it differs. As seen 

in Table 2, using a mathematical model to schedule jobs increases the utilization of all machines, 

across the different instances considered. Overall, a random machine can expect about 17% 

increase in its utilization, for any given day. The minimum and maximum observed increase in 

utilization were 9% and 22% across instances, not machines. 

Table 2: utilization improvement using a mathematical model to schedule jobs over a heuristic approach. 

Instance 
Machine 

19-Mar 21-Mar 28-Mar 01-Apr 02-Apr 

Bas. Opt. Bas. Opt. Bas. Opt. Bas. Opt. Bas. Opt. 

Axis1-2_0 38% 49% 39% 47% 42% 49% 43% 53% 31% 35% 

Axis1-2_1 39% 50% 43% 52% 44% 50% 41% 50% 46% 50% 

Axis1-2_2 42% 53% 44% 52% 48% 54% 45% 54% 51% 54% 

Axis1-2_3 36% 44% 35% 41% 36% 41% 35% 43% 44% 45% 



Axis1-2_4 28% 35% 30% 35% 33% 38% 31% 39% 30% 29% 

Axis1-2_5 26% 32% 36% 42% 31% 36% 24% 30% 38% 39% 

Axis1-2_6 63% 76% 60% 68% 62% 72% 62% 76% 68% 69% 

Axis3-4_0 53% 83% 55% 82% 75% 91% 69% 83% 51% 60% 

Axis3-4_1 35% 55% 33% 51% 43% 53% 43% 52% 42% 54% 

Axis3-4_2 35% 57% 37% 56% 47% 57% 44% 55% 38% 52% 

Axis3-4_3 32% 53% 32% 49% 41% 51% 39% 50% 37% 54% 

Axis3-4_4 37% 61% 39% 60% 50% 61% 46% 61% 38% 57% 

Axis5_0 32% 54% 30% 48% 37% 47% 37% 54% 30% 60% 

Axis5_1 30% 51% 28% 46% 35% 43% 35% 51% 29% 61% 

Axis5_2 31% 53% 30% 50% 37% 45% 35% 52% 30% 66% 

Axis5_3 29% 51% 30% 50% 36% 44% 33% 49% 31% 72% 

Axis5_4 35% 61% 36% 60% 43% 52% 40% 61% 32% 76% 

Axis6_0 71% 95% 72% 91% 80% 82% 76% 84% 66% 78% 

BalCy_0 36% 61% 30% 62% 42% 63% 43% 61% 33% 64% 

BalCy_1 36% 61% 30% 62% 42% 63% 43% 61% 33% 64% 

BalCy_2 36% 61% 30% 62% 42% 63% 43% 61% 33% 64% 

finalAssembly_0 36% 44% 36% 41% 38% 44% 36% 44% 41% 40% 

finalAssembly_1 26% 45% 27% 41% 32% 42% 30% 44% 28% 59% 

finalAssembly_2 30% 52% 29% 45% 37% 47% 35% 52% 29% 65% 

finalAssembly_3 26% 45% 27% 43% 33% 42% 30% 44% 26% 62% 

finalAssembly_4 34% 60% 33% 53% 41% 52% 40% 60% 31% 71% 

finalAssembly_5 31% 53% 29% 47% 35% 43% 35% 53% 29% 70% 

finalAssembly_6 29% 51% 30% 49% 34% 42% 32% 50% 28% 72% 

finalAssembly_7 29% 51% 29% 48% 34% 40% 32% 50% 28% 76% 

 

2. Job sequencing policy: 

Several jobs have long processing times on the assembly line. The current scheduling policy is set to 

dispatch such jobs at random times in between other jobs that have normal processing times.  

 

2.1. Experimental setup:  

For a given batch of products to schedule, we label the jobs with high processing times (60 

minutes) on the assembly line with the subscript long, and the jobs with normal processing times 

with the subscript normal. Since we know that the current policy is to mix both types of jobs, we 

wanted to see if the optimal schedule will choose to grope “long” jobs together, or scatter them 

in between “normal” jobs.  

 

2.2. Results: 

The numbers in Table 3 represent the optimal dispatching sequence of “long” jobs. Other jobs 

with “normal” processing times are not shown. The total number of jobs scheduled in each 

instance is a random number between 10 and 12. Note that these numbers are all consecutive, 

it indicates that grouping jobs with high processing times on the assembly line is a better 



scheduling policy, compared to dispatching them at random in between other jobs with “normal” 

processing times.  

Table 3: optimal dispatching sequence of jobs with high processing times at the assembly line, for various days in 
weeks 10-47. Note that all sequences are consecutive. 

Week 
Product 

W-10 W-24 W-47 W-12 W-13 W-13 W-14 W-14 

IRB460_rep0     17   14 

IRB6700_rep2 15  16      

IRB6620_rep0 11  14  14    

IRB6650S_rep0   13   10   

IRB6700_rep0 14  15  15  13 12 

IRB7600_rep0 10  12  13   11 

IRB6700_rep5  12  12     

IRB6700_rep6  13  11     

IRB6700_rep4 12 14 18 13     

IRB6700_rep3  15 17 14  11 12  

IRB6700_rep1 13 16    12   

IRB660_rep0  17 19 15 16  14 13 

 

3. Processing times variation: 

Due to the variation in the design processing times of different products on different machines, we 

observed high waiting times for products due to blockage, even when the jobs are dispatched in an 

optimal manner. To put things into perspective, producing a batch of 18 products can expect to have 

about 55% of workstation idle time due to process time variation. This is based on all the test cases 

and assumes an optimal dispatch of products. Such an insight motivated the team to investigate the 

potential gain from reducing the variation in processing times of different products on different 

workstations. Due to engineering restrictions, some processing times cannot be changed, so we only 

propose guidelines to what these times can be, and the corresponding gain in workstation utilization, 

and hence throughput, if these guidelines are followed. Due to time limitations, this last avenue is still 

be explored and no results are available at this time, though the production team agreed to continue 

developing this even after the project ends. 

Implementation:   

The above model and experiments were implemented in C++ with CPLEX as the main modeling and 

optimization package. The code is submitted with this report and can be used for further development.  

Operating the code is simple, it reads an *.csv file that stores the dependency relations between 

jobs and all the parameters needed for the model. The file is named: dependencyMatrix. Refer to the 

model section for more details. It then outputs a solution detailing the optimal schedule as a Gantt chart, 

along with some performance measures like the makespan and idle time.  

All experiments are controlled from the main file and are activated by changing the corresponding 

Boolean variables to true instead of their default false values. For example, if we are to evaluate a given 



job dispatching sequence to determine its makespan and workstation utilization, we set the expEvalSol 

variable to true and the code will take care of the rest. For this specific experiment, one needs to provide 

the sequence to be evaluated; it needs to be in the same format another input file that is provided with 

this report named: solutionAsInput.  

The code itself is well documented and guides the user as to how to use it. Still, if any questions 

arise, please contact the developer at jawad.elomari@ri.se. 


