

Kristian Gustafsson, Technology, 2015-10-15

Importance of testing and impact on cable system reliability

Transmission of electrical energy What's available?

DC cables AC cables

Technology	Al	Cu
AC XLPE 420 kV (MVAm/kg)	< 6	< 5
DC XLPE 320 kV (MWm/kg)	< 15	< 13
DC XLPE 525 kV (MWm/kg)	< 22	< 19

Sea cable system verification The big picture

From idea to installed cable system How to secure the quality?

1 Technology qualification

Development tests

Project specific qualification

2 Product verification

Material tests at supplier

Material tests at HVC

Tests to verify production processes

Routine test

Sample tests

Factory acceptance test

3 Installation verification

Routine test of accessories

Qualification of jointers

Site acceptance test

Reliable cable system for the next 40 years

Cable system qualification and verification Resources at HVC

Mechanical laboratory

High Voltage Laboratory

Materials laboratory

DC routine tests

AC routine testing

Routine test of land cables

Technology qualification Type test and prequalification test of cable systems

Type test (≈3 months)

- Mechanical preconditioning
- Load cycle test
- Impulse test
- Dissection

Prequalification test (≈18 months)

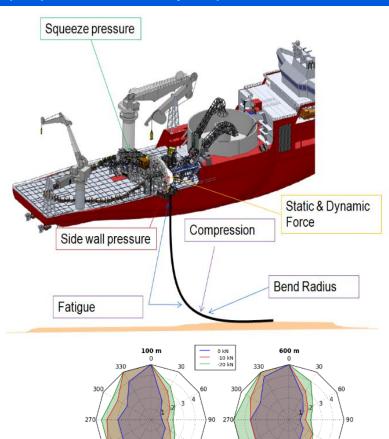
- Mechanical preconditioning
- Load cycle test
- Impulse test
- Dissection

	Extruded DC	MI	AC
Standard or recommendation	Electra 171 Cigré TB 623 Cigré TB 496 Cigré TB 303	Electra 171 Cigré TB 623 Electra 189	IEC 60840 IEC 62067 Cigré TB 623 Cigré TB 490 Cigré TB 303

Technology qualification Mechanical design

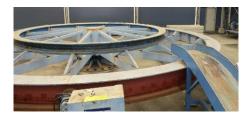
For sea cables the mechanical properties are very important

- Laying depth
- Minimum bending radius
- Ship parameters
- Wave height
- Protection requirements



Mechanical design

- Global analysis
- Local analysis



Technology qualification Mechanical tests

Test bays	
Tensile and bend	
Fatigue	
Bending stiffness	
Crush	
Longitudinal water	
Impact	
Squeeze	
Torsion	
J-tubes	

The mechanical complexity of cables depends on depth, diameter and application

Product verification Extruded cables

Conductor Stranding

Degassing

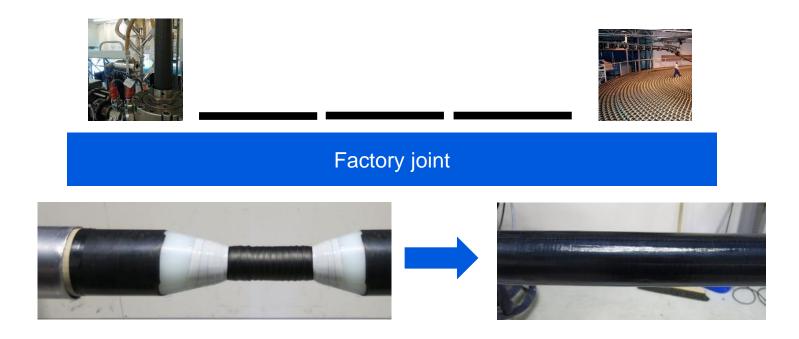
Lead extrusion

Armoring

Storage

Hot set

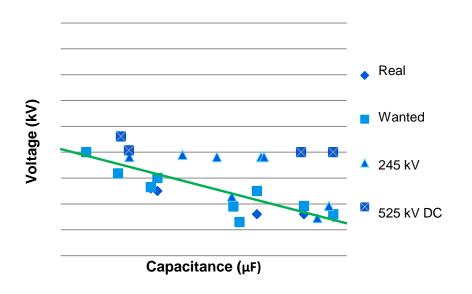
Gas measurement

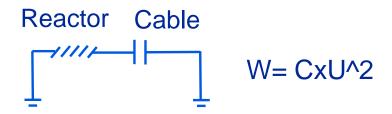

Alloy content

Routine test

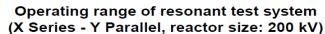
Product verification Extruded cables, factory joint

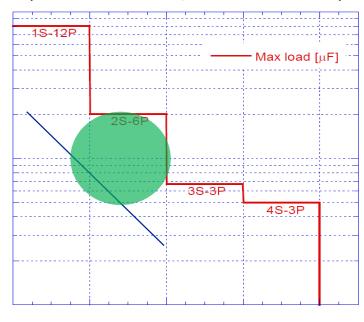
- Factory joints are the most important product for a sea cable factory
- Factory joints enables rational installation of sea cables


Product verification Why AC testing of extruded cables


- AC voltage testing is more effective than DC testing for detecting insulation defects
- Higher power means longer cable core lengths can be tested with AC voltage
- Higher power means an increased number of factory joints are tested with AC voltage and PD measured
- Higher power may eliminate need of ridged sea joint if all factory joints can be tested before delivery

Product verification Routine tests, what's the challenge?




What to do?

- Shorter delivery lengths
- Reduced voltage
- Inverse AC testing
- Increase capability

Product verification Operating range

 $1S12P \approx 400 \text{ km}$

 $2S6P \approx 100 \text{ km}$

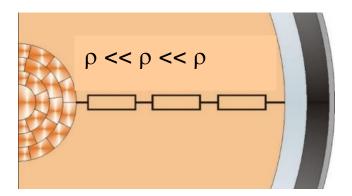
3S3P ≈ 30 km

4S3P ≈ 25 km

Ongoing and future projects

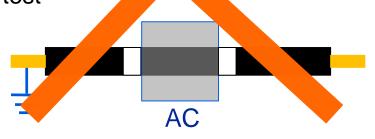
Test voltage [kV]

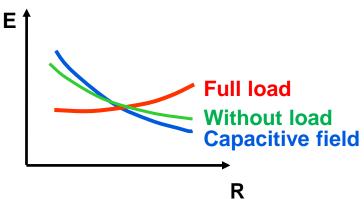
Ultra long delivery AC and extruded DC lengths tested according to standard or internal requirements to improve quality and reduces the number joints in field


Maximum cable load [μF]

Cable system verification How to test factory joints?

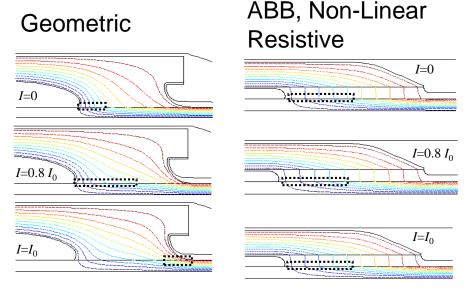
AC testing


 All insulation layers of the factory joint are fully voltage tested: conductor screen, main insulation, and insulation screen



AC testing: Invers

 Insulation creen of e factory joint is ested, since screen only partly V 70 separations ar ade for the voltage test



Cable system verification Premolded joints

 The quality of every joint is verified with an AC voltage test and Pd measurement

The resistive field grading material gives low electric field strength throughout the insulation system

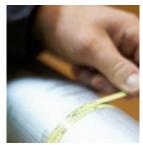
Cable system verification MI cables

Conductor Stranding

Paper lapping

Drying and Impregnation

Lead extrusion


Armoring

Storage

Dielectric response

High Voltage test Conductor

Capacitance

resistance

Power factor test

Factory acceptance test

Loss factor

Installation verification How to ensure a successful test?

Installation verification Some of ABB recent experience

Extruded DC 300/320 kV

 ABB have installed and successfully commissioned 2000 km cable and >1000 joints without any failure

AC cables

- Martin Linge 132 kV163 km1 rigid sea joint
- Troll 66 kV
 70 km

Lillebält 420 kV
 15 km

Power and productivity for a better world™

Disclaimer

The information in this document is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential damages of any nature or kind arising from the use of this document, nor shall ABB be liable for incidental or consequential damages arising from use of any software or hardware described in this document.

© Copyright 2015 ABB. All rights reserved.

