

10th May

paul.hyland@ie.abb.com

Technical Overview CPD series:

- L.V switchgear and panel selection
- L.V selectivity and discrimination
- IEC61439 part 1 and 2 L.V switchgear
 & Control assemblies.

Technical support and training

Technical & Design Promotion Manager

Paul Hyland Electrical Engineer (Electrician)

29 +1 years LV switchgear and Control Assemblies

6 years ABB technical Support and product design

Degree in Electrical Service Design BEng

Honours Degree Electrical Service and Energy Management BSc

SACE Level 3 service engineer

Participating member of the ETC TC4 NSAI group for LV SWG $\,$

Member of Engineers Ireland

Participating member of the SC 121B IEC International Electrotechnical Commission, MT2 Maintenance team for the IEC 61439 part 0, part 1 and part 2. for LV switchgear

ABB provide all Technical support as one ABB team.

CPD Presentations – timetable

April/ May 2022

Monday	Tuesday	Wednesday	Thursday	Friday
	26 th April Technical overview of LV Switchgear and Panel Selection. Paul Hyland	27 th April Building Automation- KNX universal protocol & DALI Pierre Badenhorst	28 th April The Fundamentals & Principles of Building Energy Management Systems Seamus MacLughadha	
	<u>3rd May</u>	<u>4th May</u> IIoTfor Electrical installations Paul Mimnagh	<u>5th May</u> Building Services Integration BACnet and other options Seamus MacLughadha	
	10 th May LV Selectivity / Discrimination Paul Hyland	11 th May Introduction to MV Switchgear David Supple	<u>12th May</u> IES Synchronous Reluctance Drive and Motor Package Tero Helpio	
	IEC61439 overview of Standard for Low Voltage Switchgear & Assemblies Paul Hyland	<u>18th May</u> Electric Vehicle Charging Infrastructure James Kelly	19 th May	
	24" May Arc Fault Detection Devices (New MCBs & RCBOs) Paul Hyland	<u>25th May</u> Harmonics, VSDs and mitigation technologies Liam Blackshaw		

Circuit Breaker Selection

Paul Hyland

Why is breaker selection important?

How to calculate fault level?

Discrimination types?

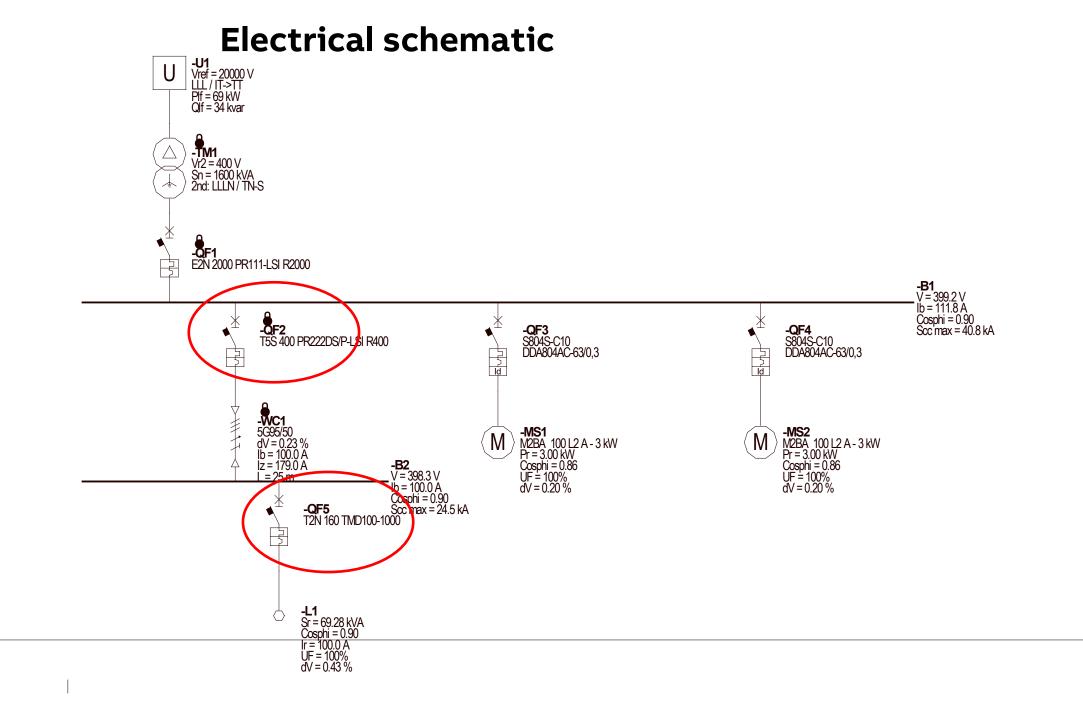
Back up protection?

Current Limiting (breaker's)?

Definition's?

Importance of IEC61439-2 (Photos & Movies from the Lab) *CPD on the 17th of May*

Why is breaker selection/co-ordination important?


- Safety on site
- Identifying and isolating the zone where the problem is.
- Limiting the fault effects on the rest of the installation.
- Limiting stresses on components and damages to the affected zone
- Guaranteeing service continuity (to rest of plant)
- Guaranteeing restoration of power when fault is cleared
- Supplying personnel and management with a clear situation.
- Reaching a good compromise between

ECONOMY

SIMPLICITY

RELIABILITY

ABB

Calculation of fault level's

Mathematical way

Traffo 1600KVA (P=√3.V.I.impedance%) 1600 ,000 / [(√3x400)x0.06] =38kA

Cable Calculation's etc.....

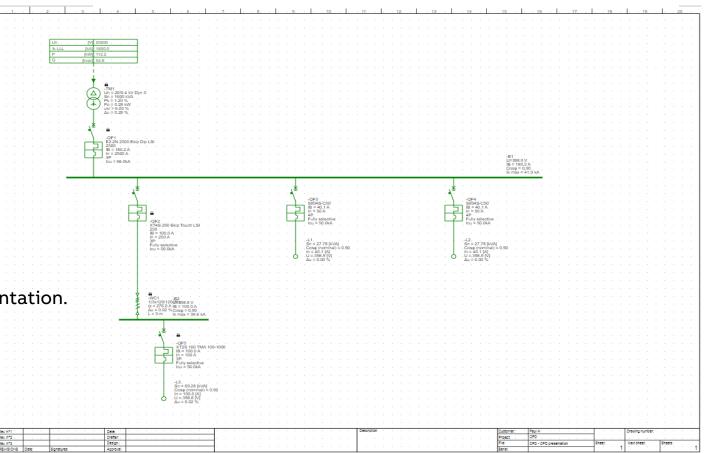
Calculation of fault level's

Manufacturer's charts

	Transformer			Circuit-breaker A (LV side)			Circuit-breaker B (Feeder circuit-breaker)									
	S,	Uk	Transf I,	Busbar I _b	Transf Feeder	Туре	Trip unit	Busbar I _k								
	[kVA]	%	[A]	[A]	[kA]		size	[kA]	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A
	1x500	4	722	722	17.7	E1B 800	In=800	17.7	E1B08*							
<u> </u>	1x630	4	909	909	22.3	E1B 1000	In=1000	22.3	E1B08*							
8 N	1x800	5	1155	1155	22.6	E1B 1250	In=1250	22.6	E1B08*							
I I I I I I I I I I I I I I I I I I I	1x1000	5	1443	1443	28.1	E1B 1600	In=1600	28.1	E1B08*	E1B10*	E1B12*					
, * ∧	1x1250	5	1804	1804	34.9	E2B 2000	In=2000	34.9	E1B08*	E1B10*	E1B12*	E1B16*				
	1x1600	6.25	2309	2309	35.7	E3N 2500	In=2500	35.7	E1B08*	E1B10*	E1B12*	E1B16*	E2B20*			
	1x2000	6.25	2887	2887	44.3	E3N 3200	In=3200	44.3	E1N08*	E1N10*	E1N12*	E1N16*	E2N20*	E3N25*		
1 5 5 5 B	1x2500	6.25	3608	3608	54.8	E4S 4000	In=4000	54.8	E2N10*	E2N10*	E2N12*	E2N16*	E2N20*	E3N25*	E3N32*	
	1x3125	6.25	4510	4510	67.7	E6H 5000	In=5000	67.7	E2S08*	E2S10*	E2S12*	E2S16*	E2S20*	E3S25*	E3S32*	E4S40

	Transformer			Circuit-breaker A (LV side)				Circuit-breaker B (Feeder circuit-breaker)								
	s,	Uk	Transf I,	Busbar I _b	Transf Feeder I _k	Туре	Trip unit	Busbar I _k	r							
스스	[kVA]	%	[A]	[A]	[kA]		size	[kA]	A 008	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A
88	2x500	4	722	1444	17.5	E1B 800	In=800	35.9	E1B08*							
- I I	2x630	4	909	1818	21.8	E1B 1000	In=1000	43.6	E1N08*	E1N10*	E1N12*	E1N16*				
1 3 3 A	2x800	5	1155	2310	22.1	E1B 1250	In=1250	44.3	E1N08*	E1N10*	E1N12*	E1N16*	E2N20*			
	2x1000	5	1443	2886	27.4	E1B 1600	In=1600	54.8	E2N10*	E2N10*	E2N12*	E2N16*	E2N20*	E3N25*		
	2x1250	5	1804	3608	33.8	E2B 2000	In=2000	67.7	E2S08*	E2S10*	E2S12*	E2S16*	E2S20*	E3S25*	E3S32*	
Ϋ́Υ̃ ^B	2x1600	6.25	2309	4618	34.6	E3N 2500	In=2500	69.2	E2S08*	E2S10*	E2S12*	E2S16*	E2S20*	E3S25*	E3S32*	E4S40
	2x2000	6.25	2887	5774	42.6	E3N 3200	In=3200	85.1	E3H08*	E3H10*	E3H12*	E3H16*	E3H20*	E3H25*	E3H32*	E4H40

			Transformer			Circuit-breaker A (LV side)				Circuit-breaker B (Feeder circuit-breaker)								
8	8	8	s,	Uk	Transf I,	Busbar I _b	Transf Feeder I _k	Туре	Trip unit	Busbar I _k	r							
Г¥-	¥	¥.	[kVA]	%	[A]	[A]	[kA]		size	[kA]	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A
15	1	₹ ^	3x630	4	909	2727	42.8	E1N 1000	In=1000	64.2	E2N10*	E2N10*	E2N12*	E2N16*	E2N20*	E3N25*		
			3x800	5	1155	3465	43.4	E1N 1250	In=1250	65	E2N10*	E2N10*	E2N12*	E2N16*	E2N20*	E3N25*		
.8	.*	.* -	3x1000	5	1443	4329	53.5	E2N 1600	In=1600	80.2	E2S08*	E2S10*	E2S12*	E2S16*	E2S20*	E3H25*	E3H32*	
L)	<u> </u>	ŇВ	3x1250	5	1804	5412	65.6	E2S 2000	In=2000	98.4	E3H08*	E3H10*	E3H12*	E3H16*	E3H20*	E3H25*	E3H32*	E4H40
	'	1	3x 1600	6,25	2309	6927	67	E3S 2500	In=2500	100.6	E3V08*	E3V 12*	E3V12*	E3V16*	E3V20*	E3V25*	E3V32*	E4V40


Calculation of fault level's

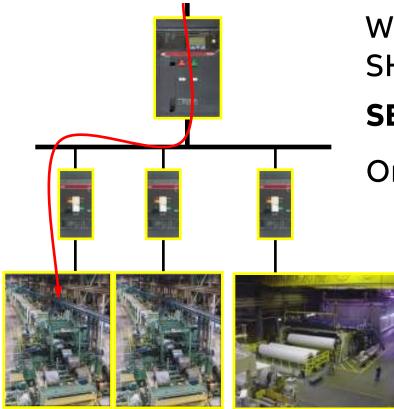
Software package

The main functionalities of the program are:

- Drawing the single-line electric diagram;
- Drawing the key diagram of the auxiliary circuits;
- Calculation of line current and voltage drops;
- Calculation of short-circuit currents;
- Dimensioning low- and medium-voltage cables;
- Dimensioning switching- and protection devices;
- Switchboard configuration;
- Setting and coordination of protection devices;
- Verifying cable protection;
- Printing the single-line diagram and project documentation.

https://partnerhub.connect.abb.com/ https://econfigure.xe.abb.com/global/#/categories https://www.lowvoltage-tools.abb.com/soc

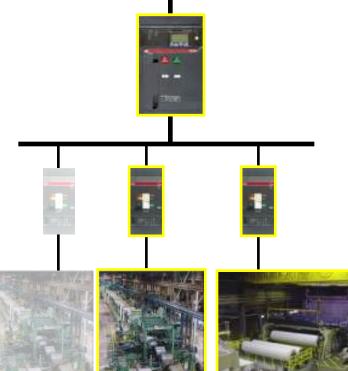
SACE Emax 2		E1.2	E1.2							
Performance levels		В	С	N	L					
Rated uninterrupted current lu ([A]	630	630	250	630					
		[A]	800	800	630	800				
		[A]	1000	1000	800	1000				
		[A]	1250	1250	1000	1250				
		[A]	1600	1600	1250					
		[A]			1600					
		[A]								
Neutral pole current-carrying ca	pacity for 4-pole CBs	[%lu]	100	100	100	100				
Rated ultimate short-circuit breaking capacity Icu	400-415 V	[kA]	42	50	66	150				
	440 V	[kA]	42	50	66	130				
	500-525 V	[kA]	42	42	50	100				
	690 V	[kA]	42	42	50	60				
Rated service short-circuit brea		[%lcu]	100	100	1001)	100				
Rated short-time withstand	(1s)	[kA]	42	42	50	15				
current Icw	(3s)	[kA]	24	24	36	-				
Rated short-circuit making	400-415 V	[kA]	88	105	145	330				
capacity (peak value) Icm	440 V	[kA]	88	105	145	286				
	500-525 V	[kA]	88	88	105	220				
	690 V	[kA]	88	88	105	132				
Utilization category (according t	o IEC 60947-2)	В	В	В	A					
Breaking	Breaking time for I <icw< td=""><td></td><td>40</td><td>40</td><td>40</td><td>40</td></icw<>		40	40	40	40				
	Breaking time for I>lcw		25	25	25	10				



Agenda

- Current Selectivity
- Time Selectivity
- Energy Selectivity
- Zone Selectivity
- Selectivity using Goose

What selectivity means :

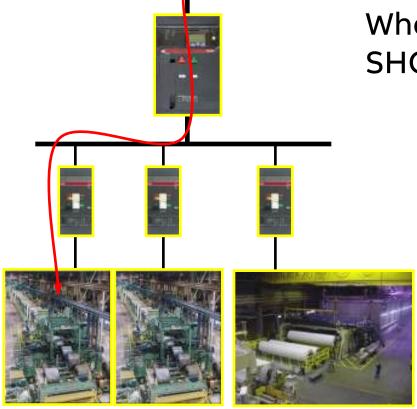


When an OVERLOAD or a SHORT-CIRCUIT occurs.

SELECTIVITY

Only the downstream CB opens,

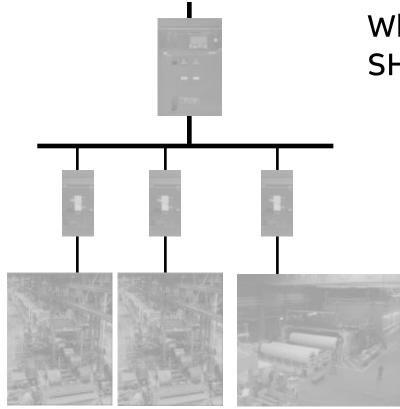
Selectivity What Selectivity means :


When an OVERLOAD or a SHORT-CIRCUIT occur.

SELECTIVITY

Only the downstream CB opens, **the other loads can be supplied**

What Selectivity means :



When an OVERLOAD or a SHORT-CIRCUIT occur.

NO SELECTIVITY

Also the main CB opens,

What Selectivity means :

When an OVERLOAD or a SHORT-CIRCUIT occur.

NO SELECTIVITY

Also the main CB opens,

ALL THE LOADS GO OUT OF SERVICE

Lack of coordination- The main problems

Difficult to understand what is happened and where

- Difficult to detect the zone affected by the problem
- Difficult to solve the problem

No service's continuity

- Production stopped/ damaged
- Machines can be damaged
- It can be dangerous for people

Lack of coordination \rightarrow Small problem can become BIG PROBLEM

Selectivity techniques

Traditional solutions

- Current Selectivity
- Time Selectivity
- Energy Selectivity

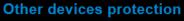
Advanced solutions

- Zone selectivity ZSI
- Selectivity using Goose

SOC - SELECTED OPTIMIZED COORDINATION

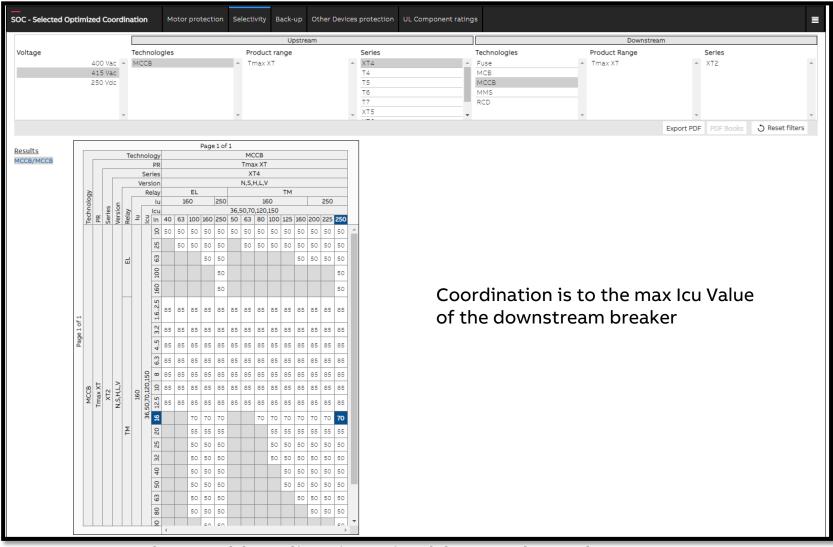
Ô

Motor protection

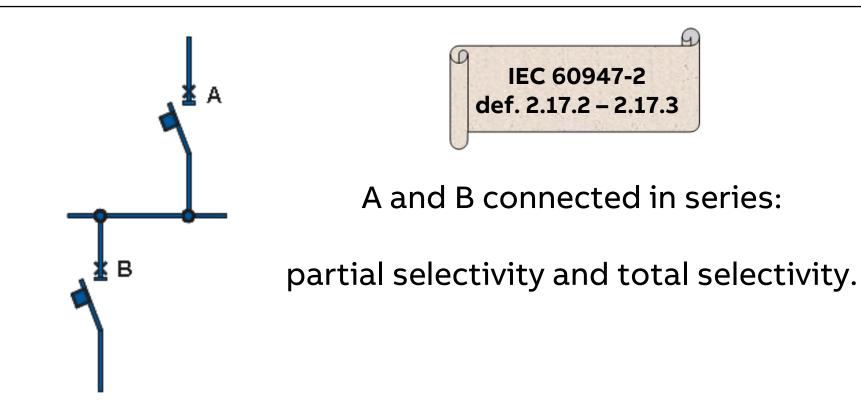

Selectivity

Back-up

Other devices protection


SOC - Selected Optimized Coordination

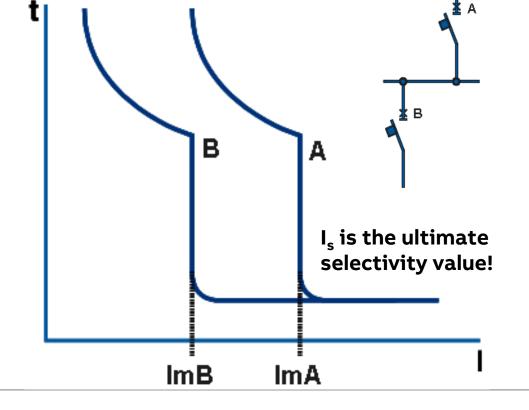
Coordination table for the protection of switch-disconnector and other devices by short circuit protection devices.


https://applications.it.abb.com/SOC/

https://applications.it.abb.com/SOC/

Selectivity definitions & standards

Partial & Total selectivity

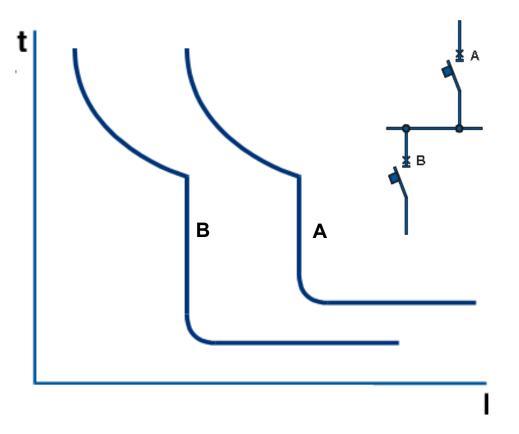


Selectivity definitions & standards

Partial selectivity

"Partial selectivity is an overcurrent selectivity where, in the presence of two protection devices against overcurrent in series, the load side protection device carries out the protection up to a given level of overcurrent, without making the other device trip."

- B opens only according to fault current lower than a certain current value;
- values equal or greater than $\rm I_s$ will give the trip of both A and B.

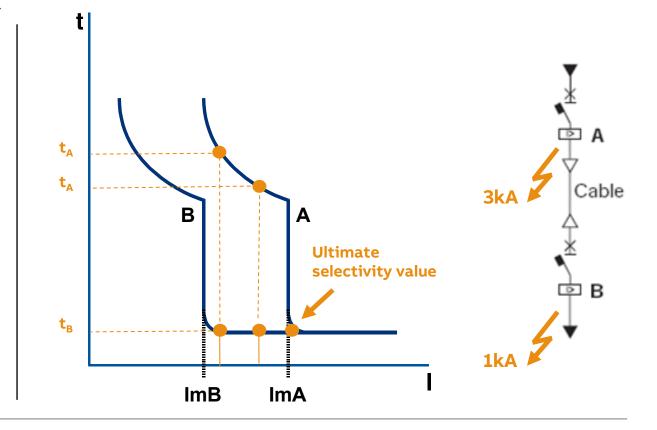


 $I_s = I_{mA}$

Selectivity definitions & standards

Total selectivity

- "Total selectivity is an overcurrent selectivity where, in the presence of two protection devices against overcurrent in series, the load side protection device carries out the protection without making the other device trip."
 - Only B trips for every current value lower or equal to the maximum short-circuit current..


Selectivity techniques

Current selectivity

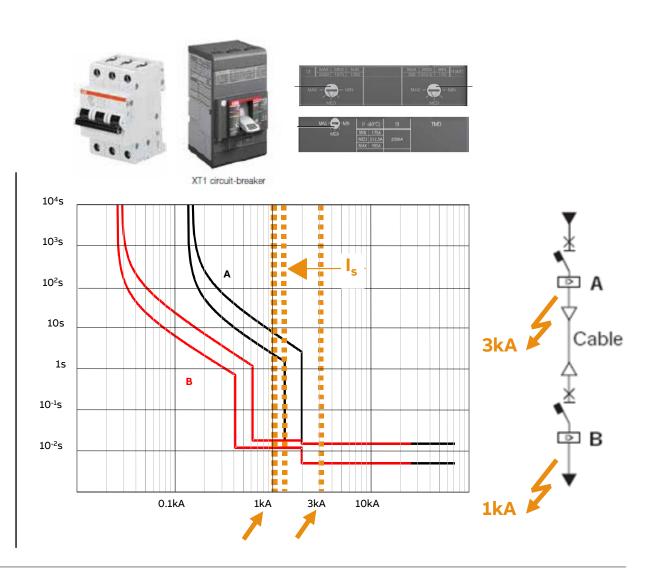
Basic concept

When the point of fault is closer to the source, the fault current will be higher.

- In order to guarantee selectivity, the protections must be set to different values of current thresholds.
- The ultimate selectivity value is equal to the instantaneous trip threshold of the upstream protection device.
- Other methods are needed to have a total selectivity

Selectivity techniques

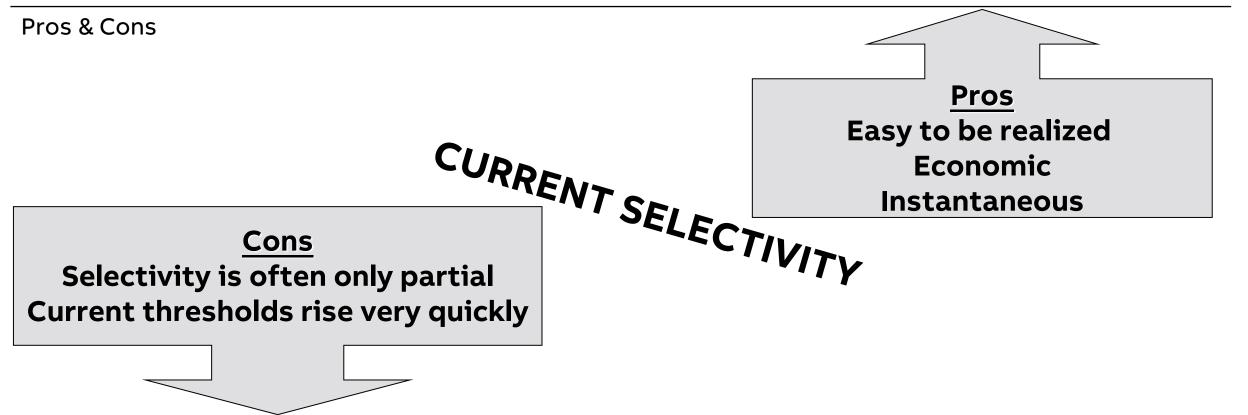
Current selectivity


Example

Circuit breaker A will be set to a value which does not trip for faults which occur on the load side of B. $(I_{3Amin} > 1kA)$

Circuit breaker B will be set to trip for faults which occur on its load side ($I_{3Bmax} < 1kA$)

$I_s = I_{3Amin}$

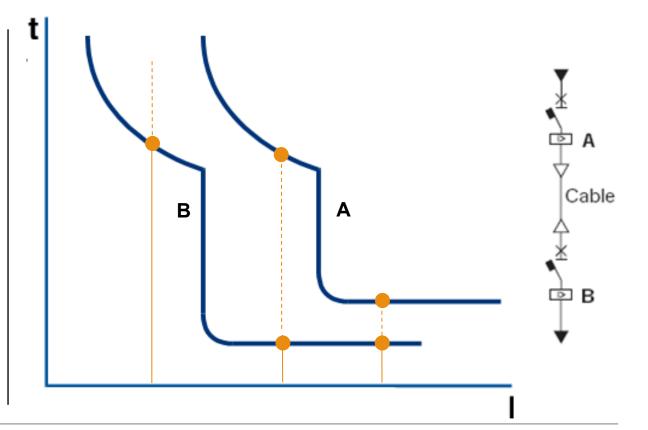

Here the selectivity is a total selectivity, because it is guaranteed up to the maximum value of the short-circuit current, 1kA.

Selectivity techniques

Current selectivity

Selectivity techniques

Time selectivity


Basic concept

Time selectivity is based on a trip delay of the upstream circuit breaker, so to let to the downstream protection the time suitable to trip

Setting strategy:

Progressively increase the trip delays getting closer to the power supply source

 On the supply side: The S function is required

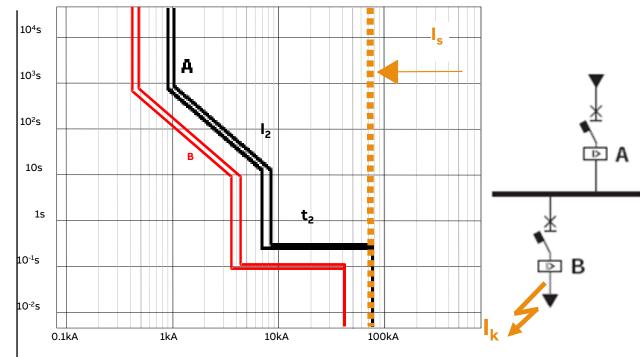
Selectivity techniques

Time selectivity

Example

Circuit breaker A will be set with the current threshold I_2 adjusted so as not to create an overlapping trip and with a trip time t_2 adjusted so that B always clears the fault before A.

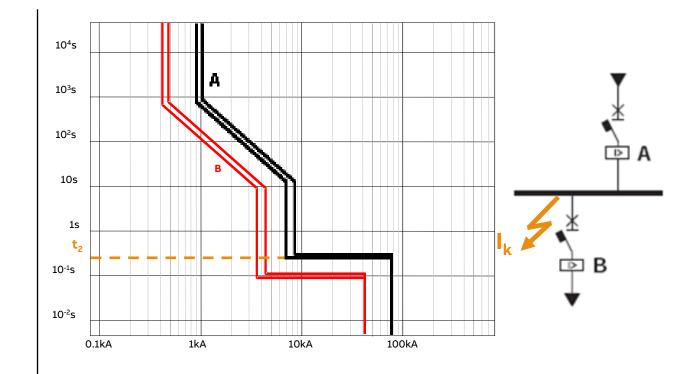
B will be set with an instantaneous trip against short-circuit.


The ultimate selectivity value is:

- $I_s = I_2$ (if function S = ON/I on Curve A=OFF)
- $I_s = I_3$ (if function I = ON / Curve B)

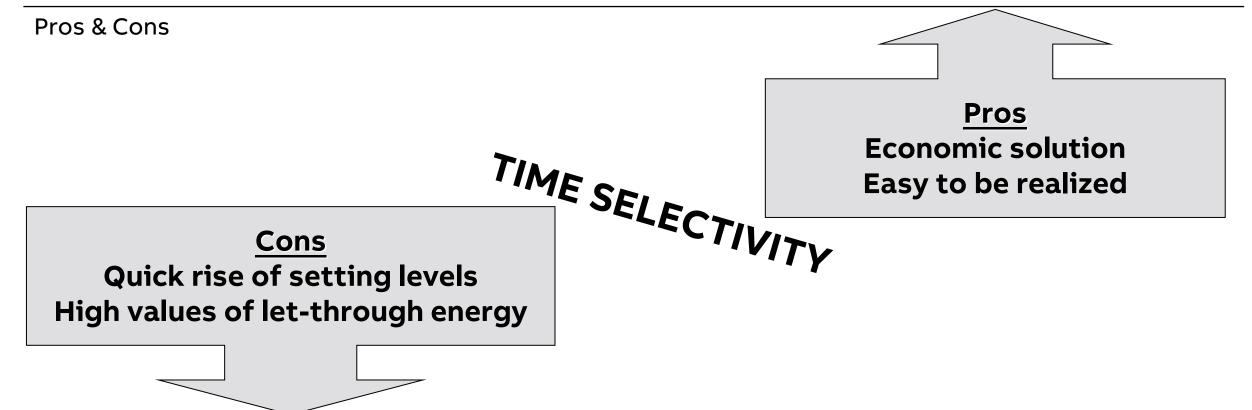
Selectivity techniques

Time selectivity


Example

There is a problem with time selectivity!

In the case of fault occurring at the busbars, circuit breaker A takes a delayed trip time t_2

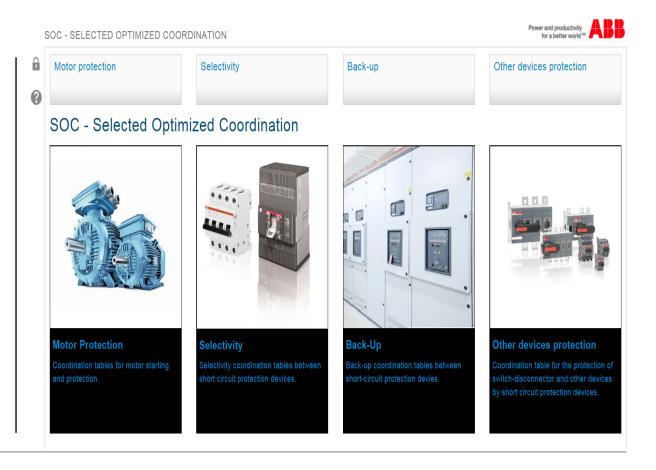

The network must withstand high values of letthrough energy!

If there are many hierarchical levels, the progressive delays could be significant!

Selectivity techniques

Time selectivity

Selectivity techniques


Energy selectivity

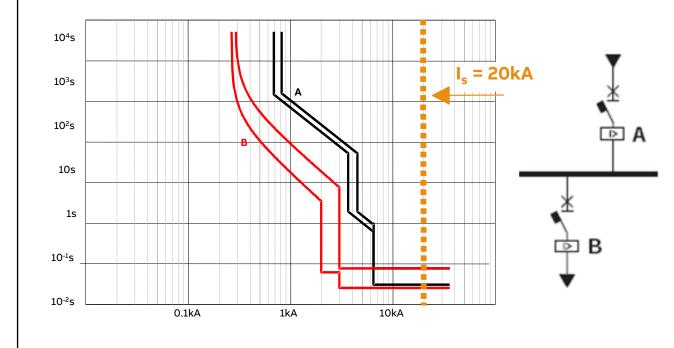
Basic concept

Energy selectivity is based on the current-limiting characteristics of some circuit breakers

Current-limiting circuit breaker has an extremely fast trip time, short enough to prevent the current from reaching its peak

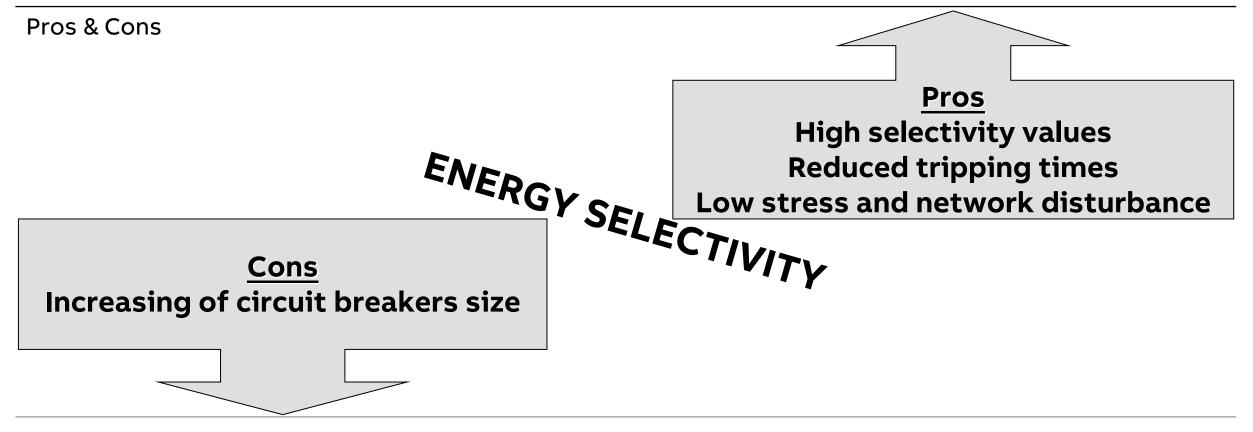
The ultimate current selectivity values are given by the manufacturer (Coordination tables)

Selectivity techniques


Energy selectivity

Example

Circuit breaker A settings:


13 = OFF

S protection is used for time selectivity

Selectivity techniques

Energy selectivity

Selectivity techniques

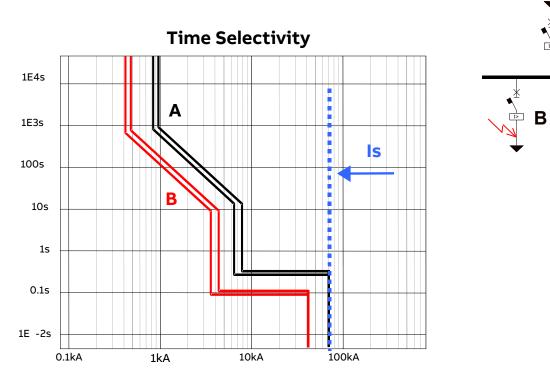
Traditional solutions

- Time current selectivity
- Current Selectivity
- Time Selectivity
- Energy Selectivity

Advanced solutions

- Zone selectivity ZSI
- Selectivity using Goose

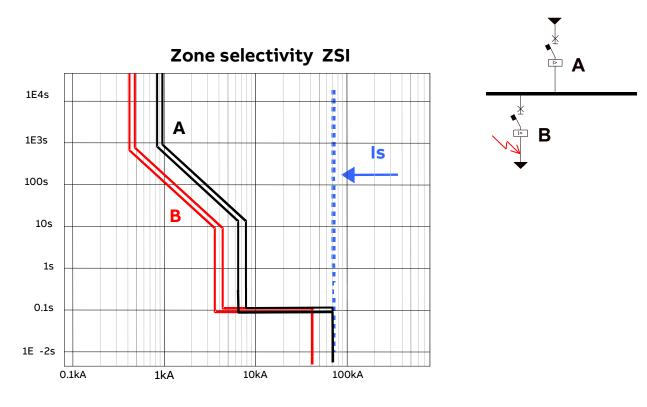
Selectivity techniques Time selectivity


Zone Selectivity

Zone selectivity ZSI

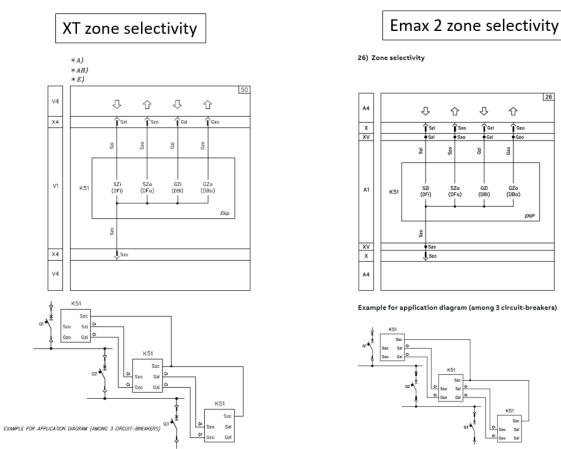
Type of devices

Breakers with high Icw values Breakers with high performance trip units


▲

Zone selectivity ZSI

Type of devices


Breakers with high Icw values Breakers with high performance trip units

Interlock S and G function (or for D function)

Zone Selectivity

A) The presence of an auxiliary supply is required for the local bus and zone selectivity functions (see Fig. 41-78).

AB) Use two-pole shielded cable type BELDEN 8762/8772 or equivalent. The shield must be earthed on the selectivity input side (for zone selectivity) or on both sides (for other applications

E) Only for XT5.

26

企

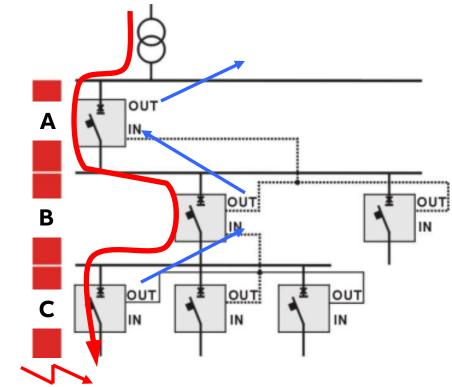
SZo (DFo)

K51

Ŷ

GZI (DBI)

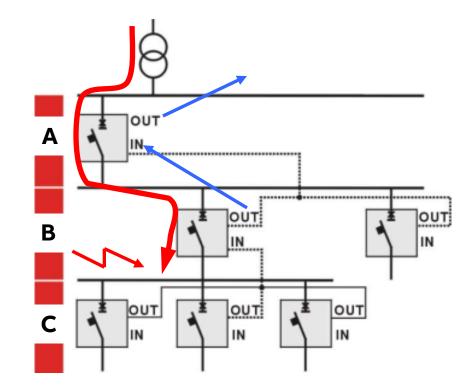
企


GZo (DBo)

EKIP

From the circuit wiring diagram, it is clear both XT and Emax2 are wired the same

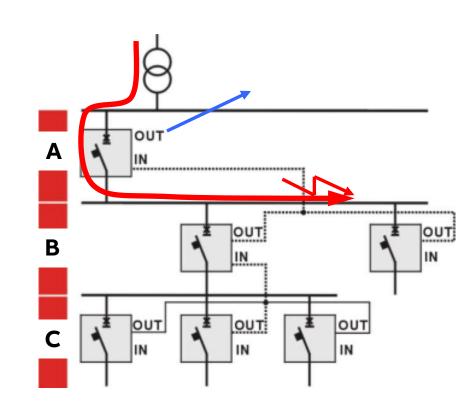
How works Zone selectivity



The C breaker sends a signal to Breaker B and this in turn only Time at the normal "S" protection setting (so slower)

If the fault is here the Breaker C trips in the <mark>Zsel</mark> <mark>Time</mark>,(so it is faster)

> C sees the fault and sends a signal to A & B to remain in their normal "S" protection



The B breaker sends a signal to Breaker A and this in turn only Time at the normal "S" protection setting (so slower)

If the fault is here the Breaker B now trips in the Zsel Time,(so it is faster)

> B sees the fault and sends a signal to A to remain in their normal "S" protection

The A breaker sends a signal to Breaker upstream if needed

If the fault is here the Breaker A now trips in the Zsel Time,(so it is faster)

'A' see the current and OPEN's

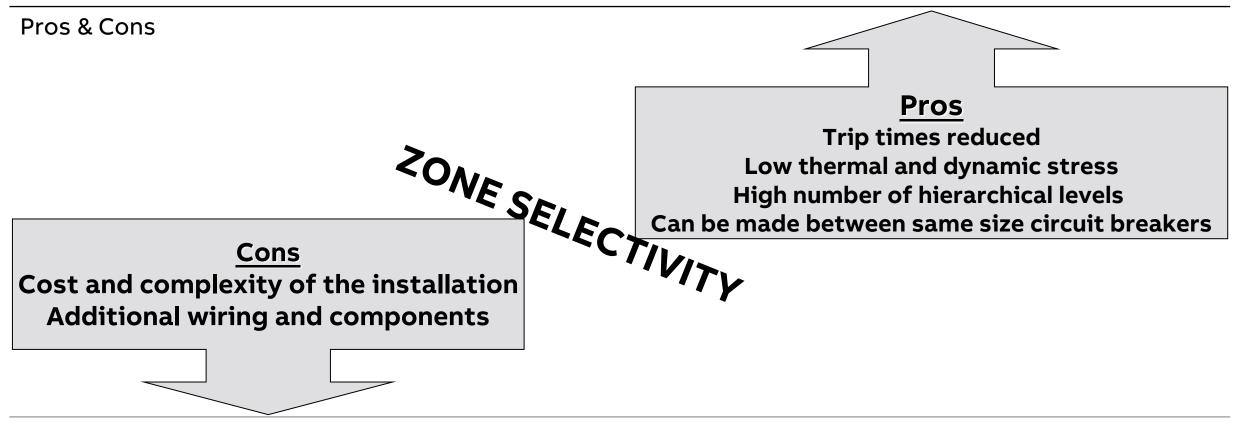
Zone selectivity

The **zone selectivity**, which is applicable to protection functions S and G, can be enabled in the case where the curve with fixed time is selected and the auxiliary power supply is present. This type of selectivity allows shorter trip times for the circuit-breaker closest to the fault than in the case of time-selectivity.

It is a type of selectivity suitable for radial nets.

The word zone is used to refer to the part of an installation between two circuit-breakers in series. The fault zone is the zone immediately on the load side of the circuit-breaker that detects the fault. Each circuit-breaker that detects a fault communicates this to the circuit-breaker on the supply side by using a simple communication wire. The circuit-breaker that does not receive any communication from those on the load side will launch the opening command within the set selectivity time (40:200ms).

We have to consider that the circuit-breakers receiving a signal from another trip unit will operate according to the set time tz.


If, for any reason, when the "selectivity time" has elapsed, the circuit-breaker delegated to opening has not opened, it makes the locking signal towards the other circuit-breakers cease to eliminate the fault.

To realize correctly the zone selectivity the following settings are suggested:

s	t2 ≥ selectivity time + t opening	
1	13 = OFF	
G	t4 ≥ selectivity time + t opening	
Selectivity time	same setting for each circuit-breaker	

Selectivity techniques

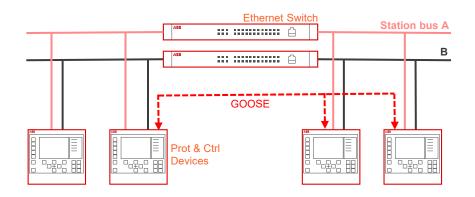
Zone selectivity

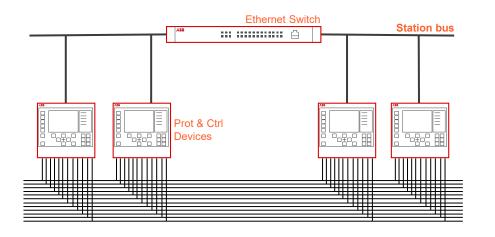
Selectivity techniques

Traditional solutions

- Time current selectivity
- Current Selectivity
- Time Selectivity
- Energy Selectivity

Advanced solutions


- Zone selectivity ZSI
- Selectivity using Goose (IEC61850)

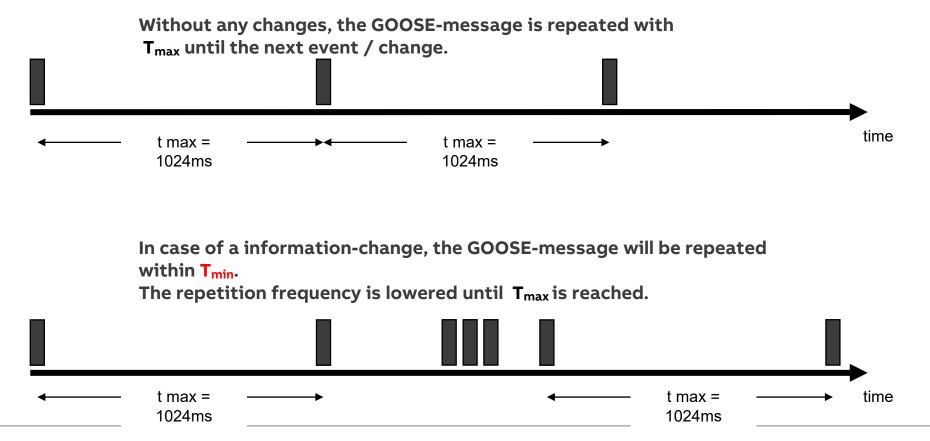


What is GOOSE?

- >GOOSE (Generic Object Oriented Substation Event)
- It is a ABB mechanism for the fast transmission of substation events, such as commands, alarms, indications (as messages)
- ➤A single GOOSE message sent by an IED (can be received and used by several receivers).
- GOOSE takes advantage of the powerful Ethernet and supports real-time behaviour
- ➤It is used for e.g.
- tripping of switchgear
- starting of disturbance recorder
- > providing position indication for interlocking

GOOSE – Advantages vs conventional wiring

Higher availability


- Less equipment and auxilliary relays required
- All signals are continuously supervised
- Optional link redundancy
- Better performance
- No intermediate relays with delay times

Optimized costs

- No wiring between panels
- Less I/Os at IEDs required
- Off-line testing through simulation

GOOSE – Real time communication

The **unconfirmed** GOOSE **messages** may transport important time critical information like a block or a trip. Therefore, a **special mechanism** has **to guarantee** a **reliable transfer** of these data

©ABB © ABB Group May 11, 2022 | Slide 45

GOOSE Performance (IEC61850 / Open protocal)

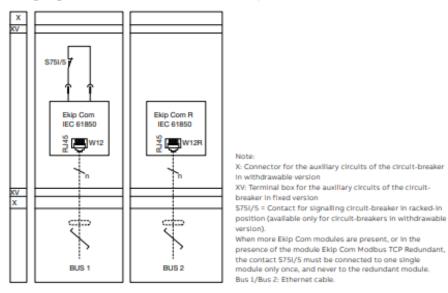
	From / to protection and control IEDs	From / to other devices	Total		
Number of I/O wires					
Inter bay signalling	104	116	220		
Automation system	85	47	132		
Other externals, i.e. load management system					
	383	252	635		

Use case:

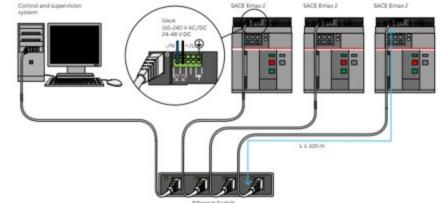
UniGear switchgear with 10 bays

 Load management system, as well as control system interface

70% of the LV signals are between the IEDs With GOOSE. There's a great potential to:


- Simplify
- Make it more flexible
- Make it more efficient
- Make it more cost-efficient
- Make it more reliable

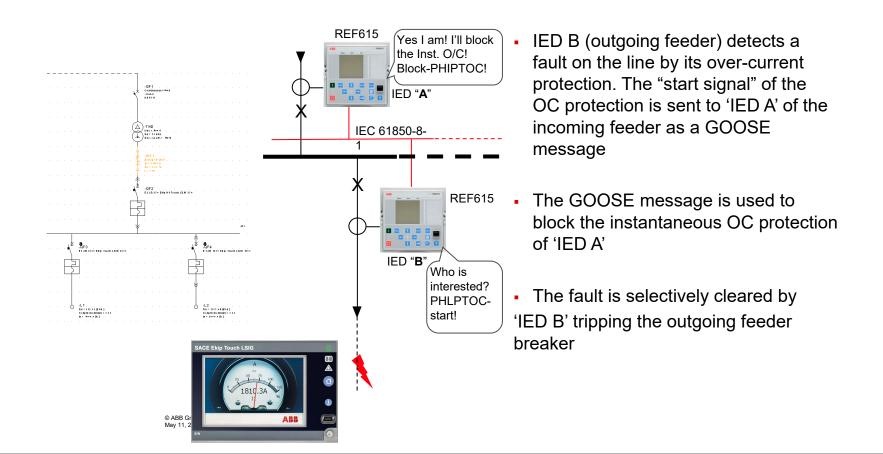
GOOSE Performance (IEC61850 / Open protocal)


4.2.2 Connection to the Ethernet network

The circuit-breaker is connected to the Ethernet network through the RJ45 female connector (W12) of the Ekip Com Modbus IEC61850 module, according to the diagram shown in the following figure. The connector is usually linked to an Ethernet cable that, in turn, connects the circuit-breaker to one of the port of an Ethernet switch. The use of the cable Ethernet Cat6 S/FTP is recommended.

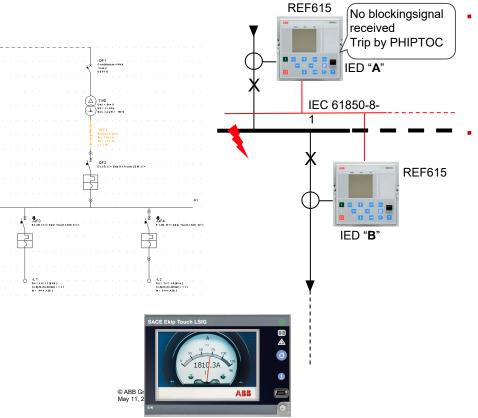
Wiring diagram

For the implementation of the communication network, which is the customer's responsibility, it is fundamental to comply with the standard installation procedures of the industrial Ethernet networks in terms, for instance, of maximum length and type of cables. Choice and installation of the Ethernet switches are customer's responsibility. It is also his responsibility to make sure that the switches can be used in the Ethernet networks with the IEC61850 communication protocol. The maximum length of the cable for the connection from the Ekip Com IEC61850 module to the switch is about 100 m (Ethernet Cat6 S/FTP cable).



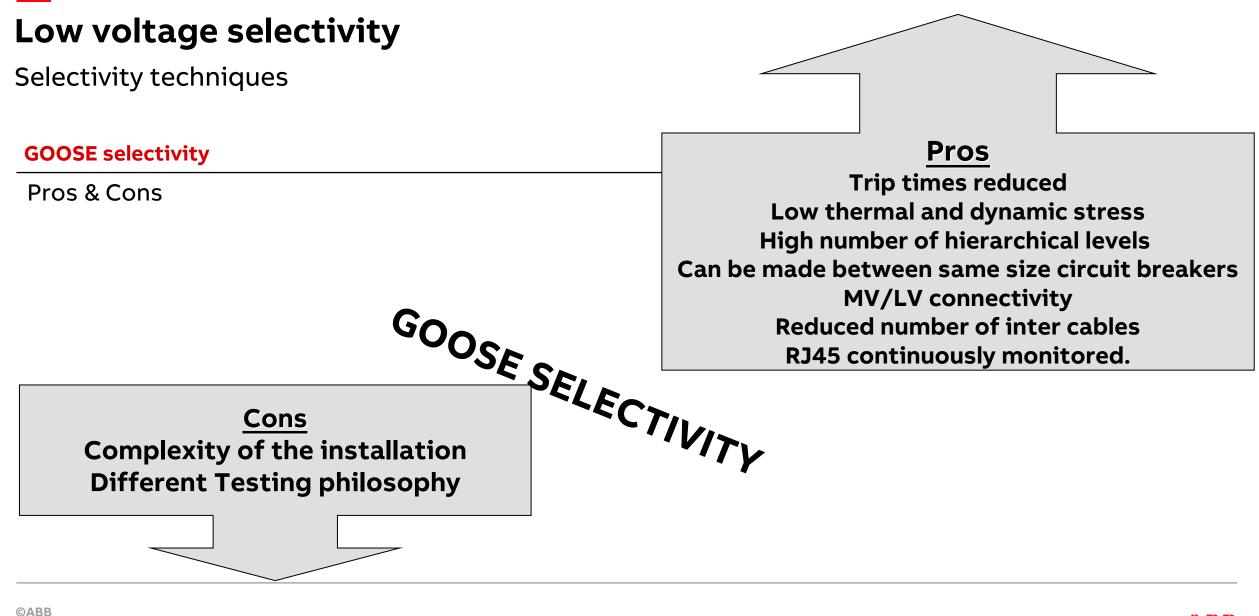
Ethernet Switch

© ABB © ABB Group May 11, 2022 | Slide 47


ABB

Application examples Blocking-based busbar protection

Application examples Blocking-based protection

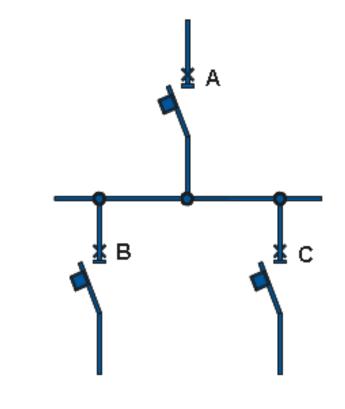


- 'IED B' (outgoing feeder) doesn't detect a fault on the busbar's by its over current protection. No "start signal" of the OC protection is sent
- After the set operating time the fault is cleared by 'IED A' tripping the incoming feeder breaker

IEC61850 other applications:

- Dual Settings
- Circuit breaker Failure

Arc Monitoring Copper wiring <37ms GOOSE <23ms


Back-Up Protection

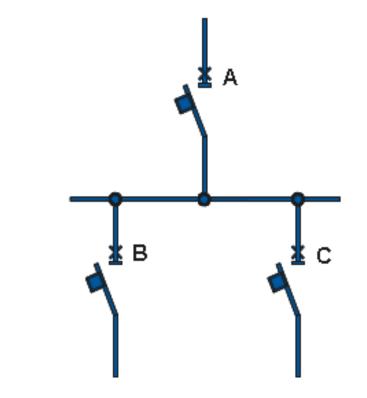
What is Back-Up protection?

Back-Up protection (or Cascading)

Is a type of coordination of two protective devices in series which is done in electrical installations where continuous operation is not an essential requirement.

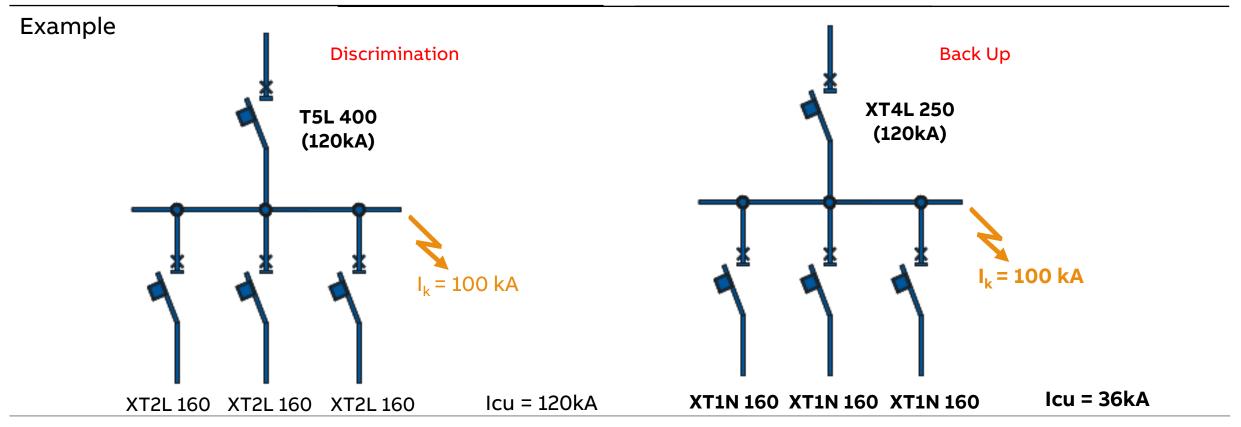
> Back-up protection <u>excludes the use</u> of selectivity!!!

Back-Up protection


Back-Up protection

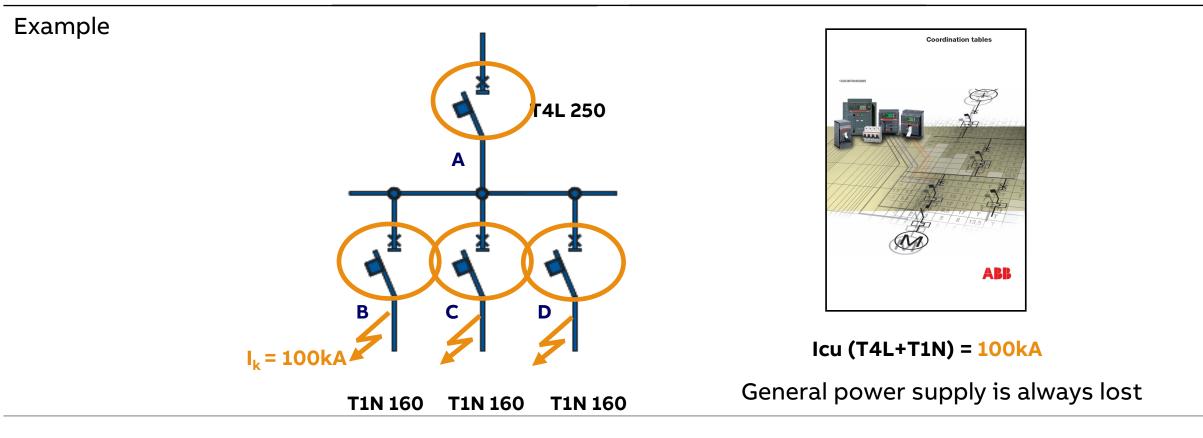
Basic concept

Back-up is used by those who need to contain the plant costs

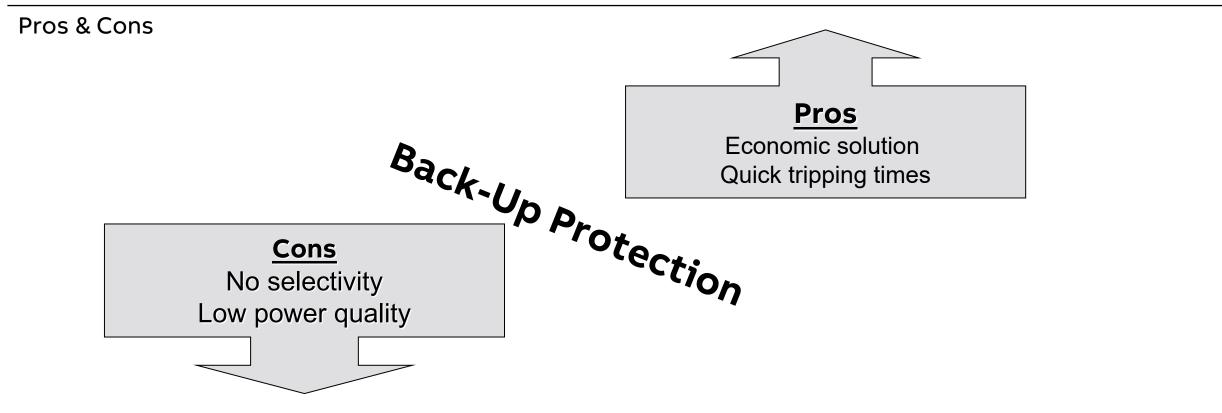

The use of a current-limiting circuit breaker on the supply side permits the installation of lower performance circuit breakers on the load side

Both the continuity of service and the selectivity are sacrificed

Back-Up protection


Back-Up protection

©ABB

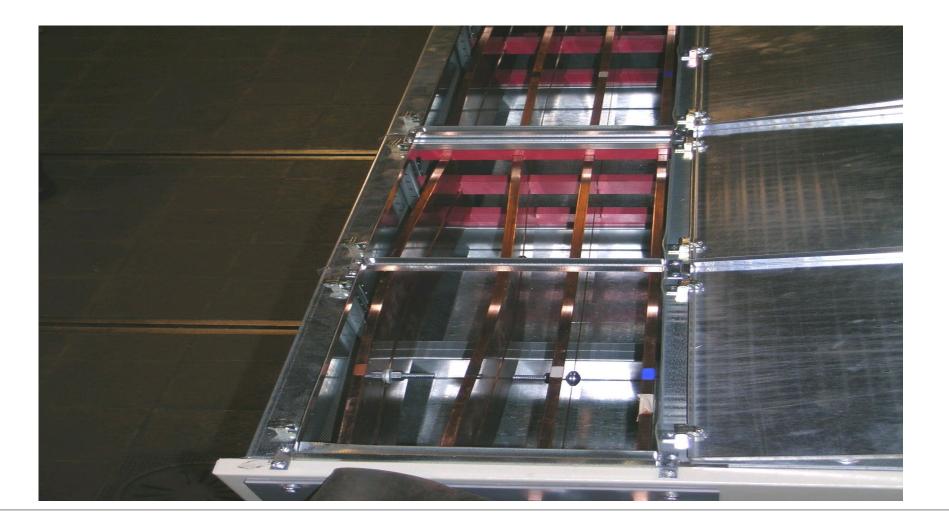

Back-Up protection

Back-Up protection

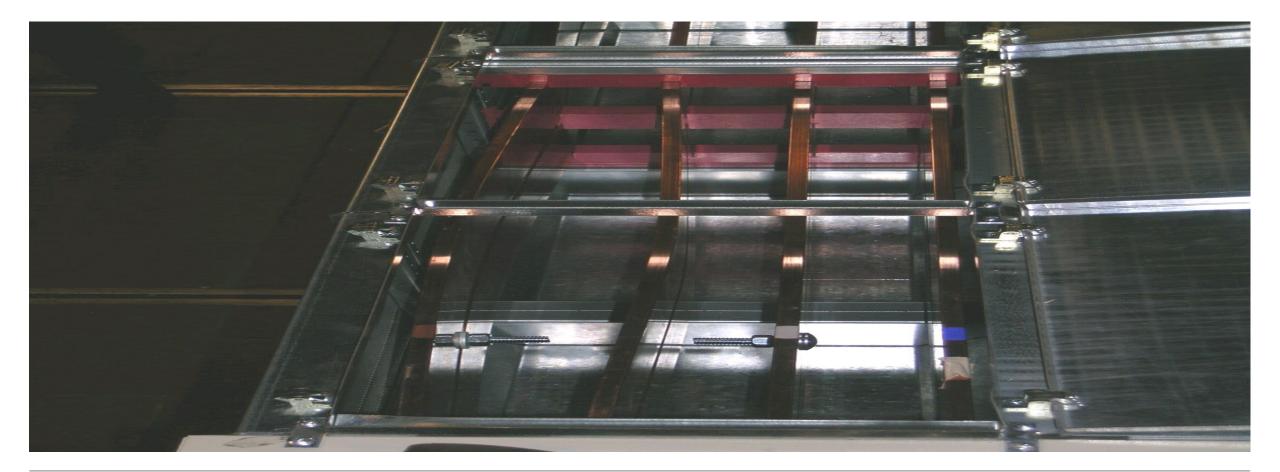
Back-Up Protection

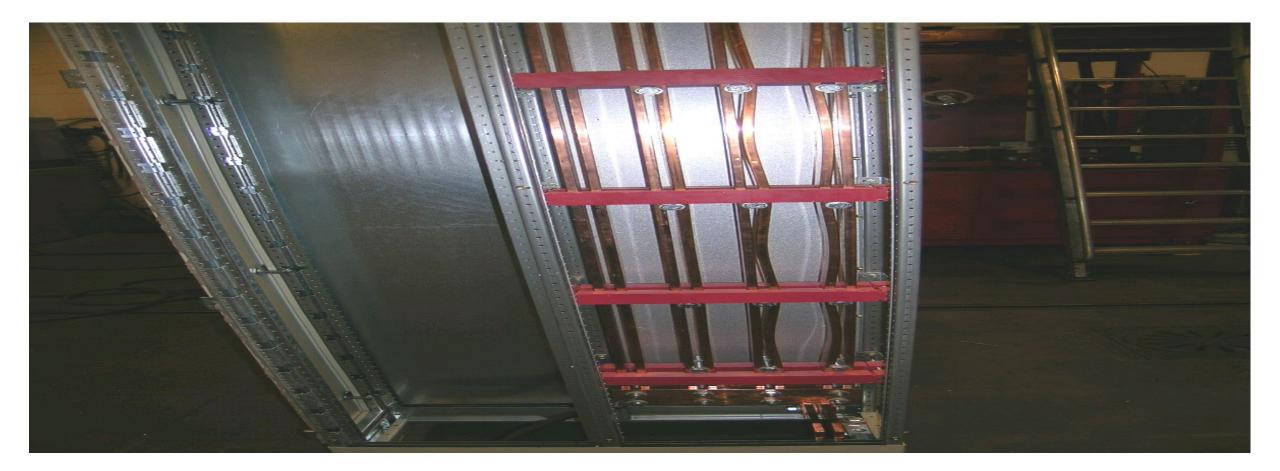
Back-Up protection

Photo's


From the test lab. Under control conditions. IEC 61439-2 (EN IS 61439-2)

https://library.e.abb.com/public/57756bd5fffd72fac12579ca002d8907/k0119_the_new_iec_web.pdf




80kA / 70 mS

REGISTERED TRAINING PROVIDER 2022

Skilled and experienced Irish team, backed by global networks

©ABB May 11, 2022 | Slide 71

ABB in Ireland

At a glance

