AL HR HD
fRmw

Ci864
Configuration Manual

2018-10-19 1/82

8VAT005003T0001 Cl864

Table of Contents

JRRST=Tox u To] o I A T 1 W e T [N o3 o] o 1R PP OURRPUUPRR 4
2 SECHION 2 - INSTAIATION.eiiiiiii ettt ettt e e et e e e bae e e e enbae e e s eneeeans 5
2.1 DYNAMIC LINKEA VEISIONocuiiiiiiicieciese ettt sttt te st ste e s e stestesaasaesaesaesaeneeneasaasansens 5
2.2 Dynamic Linked Version for PLC CoNtrolBUIldErc.ccoviiiiiiiiiiiiniise e 5
3 Section 3 - Configuration of Hardware Parameters............cccoociiiiiiiiiiiiiic e 6
3.1 DescCription Of HW SEELINGS......ciieiieieisieetere ettt e 7
N 1 1 17 S T=] [[1 PSPPSR 8
3.3 IECB0870 PartNer SELLINGScceieiieieiiesiesiesteste e ste et e et e e sa e sa e saatessessestassesteaseasennens 9
3.4 IECB0870 Station SELLINGS.....ccciiiieiecie ettt a e sa e neeseeneereans 13
IS N\ [=) aV\Y o ¢ [@e) To [U] = 1 [0 o PP 14
I G T = o (o ToTo] N Y/ o 1 TP 14
T A = L 1 =T o Y/ o 1SS 14
I S T =0 1| @ 0] £ o o RSP 16
I N @ o | 4T 1SR 16
3.10 IEC 60870-5-101 & -103 SPECITIC SETLINGS ...c.eoveerviiriiirieieie e 17
3.11 SAT 1703 SPECITIC SETLINGS ...ccuiiiiisiiee ettt ettt re et neereans 18
A 1 TSR o =T ot} 1 Tods = [o 1 18
3.13 Allen-Bradley SPeCIfiC SEULINGS.......ccceierieiiieieseresiesese ettt ans 19
4 Section 4 - Software CoONFIQUIAtIONcoiiiiiiiiiii et 21
N €= T o 1= T = | I T0] 11T o) S 21
411 STALUS COUBS ...ttt ettt b et ettt et e b e 21
412 Data SNAMING.......coveieiciciece ettt e e e eneas 21
4.1.3 STrUCTUred DAta TYPES....ocviiiieciesie e sesie e sie e ste st e et a e sa e ase e aneans 21
414) L0 0] 01Y/=T 5] o] o DTSSR 22
415 Timestamp HanNdliNg.......ccocooiiiieeeeeeeee e 22
4.1.6 Data Type TransIation. ..o 23

4.17 Using Dummy Data Items to reduce the number of Function
BIOCKS ... bbb e bbb 23
418 Receive Type Checking and Receive Type Separationcc.ccevvevveviernennnne. 24
4.2 Software configuration with IEC60870COMMLID:cccoveieiiiiiicccecceeese s 26
421 [ECB087OCONNECT ...ttt e sttt 26
422 [ECB087ORECEIVE ...ttt st sb e 26
423 IECE0870RECEIVESIZE.......cuiiiirieeeie ettt 27
424 IECBO87OWIEECYC....c vttt sttt e eb e saebe e s b e 27
425 IECE0870WIEECONT ...ttt 28
4.2.6 [ECB0870WIEESIZE.ceicieeeeieieeee ettt 28
T = 1] o [OOSR 28
4.4 Software configuration with the support libraries:.........ccccoovveieieieieicisece e 31
4.5 Software configuration with IEC60870EXTLID:ccccoveiiieieieieieieeee e 32
45.1 CONNECLIECBOBTO ...ttt sttt e b b e 32
45.2 CoNNECLIONIECBOB8T0........ceiuiiiiiieiieieit ettt e ebe e 33
453 CoNNECtIONIECB0870_DScooieieieieieieeeeeee et sre e 33
454 DAtADEIAYcveieieieieeee ettt a et e e e e enes 34
455 DataDelayMUILcvoiiiiieice et ens 34
45.6 PartNerSTATUS........ciiiiiiicc ettt 34
457 HOIASTATUS ...t bbb 34
458 SEEPAITNEIACTIVE ...ttt 35
45.9 REAUNAANCY ...ttt seene e atesneann 35
4510 RedundanCyDual............ccccoiiiiiiiiiiiiiiese e ens 35
45.11 RedundancCyDuUal3cocviiiiiiiice e 35
45.12 STALIONSTALUS ..ottt b e 36

2018-10-19 2/82

8VAT005003T0001 Cl864

2018-10-19

45.13 RCVCIOCKSYNC ..ottt et na e neeneans 36
4514 Address conversion FUNCLIONS..........ccoiiiiii e s 37
45.15 DECOAE _DP2 ...ttt sttt e e et eseeseeseenaanearaanens 37
45.16 (D= ToT0 o [T I 2 P 37
45.17 BITCOUNTIECooiiieiee ettt e ettt 37
TN T O o F= U T 1= I [0 11 (] 38
4519 SetDEDUQGOUL ..ottt et bbb 38
4520 Transparent Data channel funClions:cccceveiiiiiccccccce s 40
4.6 Software configuration with IEC60870SIaveLib:........c.ccooeieiiiiieiieieicececeese e 41
46.1 Functions to make structured variables............ccccooiiiiiiiie 42
4.6.2 Output conversion functions for Monitoring data typesc..cccceevvvenenn 43
4.6.3 Combined Output functions for Monitoring data types............ccccocvvvvvennnn. 45
4.6.4 Input handling for Command tyPEeS..........cccvviiiiiiiiie i 50
4.6.5 Input handling for Select/Execute Command typescccccevvevveveerievienecnnnnn 52
4.6.6 Combined functions to receive COMMANAS.........ccooeeiireireinee e 52
4.6.7 Functions for handling counter ValUes:...........ccoceveieieieisicn e 55
4.7 Software configuration with IEC60870MasterLib:c.ccooeeiiiiieieeeccses 57
47.1 Input conversion functions for Monitoring data types..........cc.ccoceevvevivnennnn. 58
472 Output handling for Command tYPES.......ccccoveieieieieieieeee e 60
473 Redundant Output handling for Command types..........ccccoeviiviiviivninninsinsinnnens 61
474 Output handling for Select/Execute Command types.........ccccoevrivivivnennnnn 62
475 Functions for handling counter ValUes:...........ccccevveieieieicin s 63
4.8 Software configuration with IEC60870SUPLID:cccccveieieieieieeieeeeeeeeeeee e 65
4.9 Software configuration with IEC60870RCVLID:cc.coveiiiiiieieeeceeeeees e 66
V2 I =3z T] o1 ST 2Y o o] [To 1 [0 o PSSRSO 67
4.10.1 IVEBSTET ...ttt e bbbttt neeneens 67
4.10.2 STAVE .ttt bbb bRt b et bt be e bbb e 69
S1=Tel Ao g NS RlANe AV 7T g (o= To B o] o] [02= SRR 74
L% A = =T [o =T o o3 Y PR 74
511 SIMPIE SYSTEIM ... ne e reene e 75
5.1.2 One CI864 connected to a redundant Partnercccocoeveineiencnsenseeas 75
5.1.3 Redundant CI864 DOArdS............ccociiiiiciieie e 76
5.14 Data Consistency of received datacccccvivvenenesiesese e 76
L A I { o T = U VA L= T | USSR 78
5.2.1 ez 1 1] o] [78
APPENAIX A = DIAGNOSTICSciiiieiii ettt et e et e e e bb e e e s enbee e e anneeaeanneeas 81
6.1 LED INAICALOIS ..ottt sttt bbb bbbttt b et e e e e b e 81
Appendix B - Interoperability LiSt..........coooiiiiiii i 81
APPENdiX C - CONVEISION LIST......coiiiiiiiiiiie ettt e e nee e e e eneeeas 81
Appendix D - Implementation LiMitS.........ccoviiiiiiiiiiee s 82

3/82

8VAT005003T0001 Cl864

2018-10-19

Section 1 - Introduction

The CI864 is a communication interface board for the CEX bus of a PM8xx controller. It implements
the IEC 60870-5-104 protocol. With a Serial to Ethernet converter it can also be used for the IEC
—-101 and -103 protocols as well as the SAT 1703 protocol.

The CI864 uses the same hardware as the CI857 (INSUM) board, but a different firmware and li-
braries and is considered to be a completely different device by the 800xA system.

This document describes how to install and configure a CI864 module. It describes the hardware
settings and the function blocks of the supplied libraries. Knowledge of the 800xA system in general
and 1131 programming and Control Builder in particular are assumed. Esperience with communica-
tion protocols and the particular protocol to be used are recommended, especially if advanced func-
tions like redundancy are to be used.

It is not feasible to document every possible configuration in detail. Upon request, we (ABB Austria)
can provide support for implementing specific solutions to meet customer needs.

4/82

8VAT005003T0001 Cl864

2

2.1

2.2

2018-10-19

Section 2 - Installation

The installation for version 5 is much simpler than for previous versions, simply import the needed
libraries (CI864IEC60870HwLIib and IEC60870CommLib) and the optional libraries
(IEC60870ExtLib, IEC60870SlaveLib and IEC60870MasterLib) into the project/system.

Dynamic Linked Version

e Unpack the delivery files into a temporary directory.

< Import the needed libraries into the system, insert them into the project and connect them to
the controller and application.

Dynamic Linked Version for PLC ControlBuilder

e Unpack the delivery files into a temporary directory.

e Copy the library files into the project directory, insert them into the project and connect them
to the controller and application.

5/82

8VATO005003T0001

3

2018-10-19

Cl864

Section 3 - Configuration of Hardware
Parameters

This section describes the configuration options that are set in the hardware tree.
To use a CI864 communication board, at least two three hardware devices have to be configured:

e One device of type CI864, which represents the CI864 board itself.

< At least one device of type IEC60870 Partner, which represents a connection to a communi-
cation partner or a pair of redundant partners.

« At least one device of type IEC60870 Station which represents a logical communication
partner for each IEC60870 Partner.

More than one C1864 communication board can be connected to one AC800M controller. Each
Cl864 board can handle a maximum of 8 connections.

IEC60870 Partner and IEC60870 Station objects must always use consecutive numbers starting
from 1. It is not allowed to have a Partner at position 1.1 and one at position 1.3.

Example:

In a configuration with 3 Partners, the second Partner is removed during a revision. In this case the

Partner at position 1.3 has to be moved up to position 1.2 and the references to the Partner posi-
tion in the application have to be updated.

¥ control Builder M Professional - IEC104Test (Offlin... =] E3
Fle Edit Yew Tools Window Help

D aEe oy

k
Bl Libraries
#-E Applications
= Controllers
Elm, Conkraller_1 (172,18.102.61)
-5 Connected Applications
=2 Connected Libraries
=] Hardware AC G00M
=@ o0 PMass/TPE30
[1 Clses
E-& 1 IECAOE70 Partner
L IECE0E70 Station
A 2z creed
E-& 1 IECAOE70 Partner
L IECE0E70 Station

----- " Access Variables

Feading project IEC104Te=st

Reading library IECE0870Ma=sterLib 1.0-0
Feading librarvy IECR0B7051lawelib 1.0-0
Feading application Application_ 1

1 L1z =11 = 1 n-_n
A bﬁ Description E Check ; Messaie / 1| |

Figure 1: Sample Configuration

&\\LEU'_

6/82

8VAT005003T0001 Cl864

3.1 Description of HW Settings
Some of the parameters are reserved for future expansion. These should be left at the default val-
ues. These are indicated as [Not implemented, [value]] in the text and should be set to the given

value.
Also, some parameters have setting values that should not be used, these are indicated with [Not

implemented].

2018-10-19 7/82

8VAT005003T0001

3.2

2018-10-19

Cl864

CI864 Settings

These parameters apply to the CI864 board as a whole and affect every connection to an IEC part-

ner.

Parameter

Description

Use Redundant ClI

Indicates whether this CI864 board is part of a redundant pair.
[Not implemented, false]

Use Redundant
Network

Enables the second network interface if set to true. The currently used hard-
ware (CI857) does not support this feature.
[Not implemented, false]

Primary IP Address

Network address of the primary network interface. Enter a valid IP address.

Secondary IP Ad-
dress

Network address of the secondary network interface. Enter a valid IP ad-
dress, or leave empty if the second network is not used.

If the parameter Use Redundant Network is false but a valid address is
given here, a second IP Address will be configured for the primary network
interface (virtual second network).

IP SubNet Mask

The network mask to be used. This applies to both interfaces. Enter a valid
IP network mask.

Default Route

Defines the default gateway (router). Enter the IP address or leave empty if
a default gateway is not used.

Use Common Lis-
ten Task

Normally only one task can listen on the same port number. If the same port
number is to be used by more than IEC task acting as a server, then the
Common Listen Task has to be used.

If this parameter is set to true, then a separate listen task is used. This task
listens on the port given by Common Listen Port, examines the source and
destination address of a connect request and hands it over to the correct
IEC task for handling (or rejects the request if it does not match a known ad-
dress pair).

In most configurations this parameter has to be true.

Common Listen
Port

TCP/IP port used by the Common Listen Task. In most cases this should be
left at the default number (2404) as this port is defined by the IEC104 spec.

Time Source

Determines from where the CI864 board takes its time.

CONTROLLER Time is taken from the AC 800 Controller.
NTP_GET Time is requested from an external NTP Server.
NTP_LISTEN [Not implemented].

IEC_PROTOCOL[Not implemented].

Synchronize Con-
troller

If this is set to true, the Cl board will set the time of the AC800 Controller.
Must be false if the AC800 Controller is set as the Time Source. The time of
the AC 800M Controller will only be set if a valid time is received from the
external time source.

Currently the CI864 can't be directly configured as the time source for the
AC 800M Controller. As a workaround the parameter 'CS Protocol Type'
must be set to 'No Synch' if the Controller is to be synchronized from the
Cl1864.

IP Address NTP
Server

The IP Address of an NTP Server. Only applicable if the Time Source is set
to NTP_GET.

IP Address NTP
Server2

IP Address of a secondary NTP Server that is contacted if the primary NTP
Sever can not be reached. Only applicable if the Time Source is set to
NTP_GET.

Debug IP Address

IP Address to which debugging messages are sent. Should be left empty.
Discussion of this feature is outside the scope of this document.

Debug Port

TCP Port used for debugging, used together with Debug IP Address.

8/82

8VAT005003T0001

3.3

2018-10-19

Cl864

IEC60870 Partner Settings

These parameters apply to one connection to an IEC partner or to a pair of redundant connections.

Parameter

Description

Protocol Type

Determines which protocol is used by this IEC task. Currently Only
IEC104 is implemented.

IEC104 IEC 60870-5-104 Protocol.
IEC101Balanced Implemented, not released for general use.
IEC101Master Implemented, not released for general use.
IEC101Slave Implemented, not released for general use.
IEC103Master Implemented, not released for general use.
IEC103Slave [Not implemented].

Other Other protocols.

Partner Type

Type of partner. Used to implement specific features for partners that
require non-standard behavior.

This is a bit mask, setting certain bits will activate special configuration
options. See below for details.

Data Sharing ID

Used to share data items with another IEC task.

If O, this task has its own data items (Read and Write function blocks).
If not O, this task shares data items (Read and Write function blocks)
with all other tasks that have the same 'Data Sharing ID'. Use the ID
variable of the first (lowest number) IEC Partner for all Read and Write
function blocks.

Written data is sent to all the IEC Partners (except for acknowledge
messages to commands, which are sent only to the partner that origi-
nally received the command.)

The address of received data is changed so that it appears to have
come from the first Partner.

Establish Connection
Aut At Download

If true, the connection to the IEC partner is established right after the
hardware configuration has been downloaded to the CI864 board.

[Not implemented, false].

IP Address Primary

IP Address of the IEC partner.

IP Address Secondary

IP Address of the secondary IEC partner in a redundant pair.
Use "127.0.0.1" if the secondary address is the same as the primary.

Use "127.0.0.2" if the secondary address is the same as the primary
and the next higher port number is to be used.

Network interface usage

Determines which parner uses which network interface or the primary
/secondary IP address if two addresses are used for the same inter-
face. Currenly only useful if Initiating Communication is false and this
partner uses the Common Listen Task to accept connections.

NORMAL
FIRST
SECOND
REVERSED

TCP/IP Port

TCP/IP Port. This applies to both IEC partners.

If this is 0 or the same as Common Listen Port, Use Common Listen
Task is true, and Initiating Communication is false then the Common
Listen Task handles this connection.

IP-route primary

If given, configures a specific route for the primary partner IP address
rather than the default gateway.

IP-route secondary

If given, configures a specific route for the secondary partner IP ad-
dress rather than the default gateway.

Initiating Communica-
tion

If this parameter is true, then the IEC task initiates the TCP/IP connec-
tion (it is the client), if it is false, it accepts the connection (it is the
server).

Control Connection

If true, then the IEC task is the controlling station, if false it is the con-
trolled station. (See handling of STARTDT and STOPDT in the IEC104
spec.)

9/82

8VAT005003T0001

Cl864

Timeout Seconds Of
Connection Est (t0)

Time to wait after a failure to establish a connection to the IEC partner
before the next retry. Only used when Initiating Communication is
true.

Defined in IEC104.

Timeout Seconds Of
Send Or Test APDUs

(t1)

Timeout for acknowledge telegrams.
Defined in IEC104.

Timeout Seconds
Acknowledge No Data
Message (t2)

Time after which an acknowledge telegram is sent if no data telegrams
have to be sent.

Defined in IEC104.

Timeout Seconds Send-
ing Test Frames (t3)

Time after which test telegrams are sent if no data telegrams are sent
in any direction.

Defined in IEC104.

Max Diff Receive Se-
quence Number (k)

Maximum number of telegrams that can be sent before an
acknowledge telegram is received.

Defined in IEC104.

Latest Ackn After Num-
ber Of I-Format (w)

Number of received telegrams after which an acknowledge telegram is
sent.

Defined in IEC104.

Link address size

Size of the Link Address field. Not used with IEC104, used with IEC101
and IEC103. Must be 1 with IEC103.

Defined in IEC104.

Start active only

Only activate data transfer on the active connection. Used to imple-
ment a redundant master on a shared physical medium (e.g. a RS485
bus).

Now also implemented for IEC104. When set and ControlConnec-
tion=TRUE, data transfer is started/stopped (StartDT/StopDT) based
on the active/passive state of the connection.

When this is set, a connection state of 1 (IP connection ok, data trans-
fer not enabled) does not generate a warning on the HW unit.

Listen passive

When set the passive connection will listen in on the traffic and handle
received data normally. This setting is only useful together with the
Start active only.

Max Data Size

Maximum number of bytes (octets) of user data in one telegram. This
limits the number of information elements that can be sent in one tele-
gram based on the size of one information element. One information el-
ement can always be sent, even if it exceeds this size.

This does not limit the size of received telegrams.

Max Data Elements

Maximum number of information elements in one telegram.

The lower value of Max Data Elements and the number calculated
from Max Data Size is used.

Data elements are split up into as many separate telegrams as
needed.

No Of Octets In Com-
mon Address

Number of bytes (octets) used for the Common Address.
Must be 2 for the IEC104 protocol and 1 for the IEC103 protocol.
Defined in IEC104.

No Of Octets In Info Obj
Addr

Number of bytes (octets) used for the Information Object Address.
Must be 3 for the IEC104 protocol and 2 for the IEC103 protocol.
Defined in IEC104.

No Of Octets In Cause
Of Transmission

Number of bytes (octets) used for the Cause of Transmission.
Must be 2 for the IEC104 protocol and 1 for the IEC103 protocol.
Defined in IEC104.

Redundancy

Type of redundancy. Determines what types of data messages are
handled or silently ignored when the IEC task is not active. The active
partner always handles all messages and both partners handle system
messages.

The table below indicates if Monitoring or Command data types are
handled by the passive partner.

NONE No redundancy, all messages are handled.

STANDBY No messages are handled.

10/82

8VAT005003T0001

cl864
SHADOW Incoming Commands and outgoing Monitoring are
handled.
REVERSED Incoming Monitoring and outgoing Commands are
handled.
DUAL Incoming Monitoring messages are handled.
INCOMING Incoming messages are handled.

OUTGOING Outgoing messages are handled.

Send double telegrams

If true, certain data types are sent twice, first as a high priority message
without a timestamp and then as a low priority message with the
timestamp.

Currently only implemented for the SAT 1703 protocol.

Write Buffer Queue Size

Maximum number of telegrams in the outgoing queue. This should be
high enough to hold all the data sent by all Write function blocks.

A typical value is twice the number of IEC60870Write function blocks
for monitoring data types.

Read Buffer Queue Size

Maximum number of telegrams in the incoming queue.

Common Address

Common Address of the IEC task. Used mainly for system telegrams.
System telegrams (like a General Acquisition request) received from
the partner will only be processed if it is addressed to this address or
the broadcast address.

Originator Address

Originator Address. This address is put into all outgoing telegrams. The
Originator Address of incoming telegrams is ignored.

Use Local Time

Determines if the time stamps in telegrams are in UTC or in local time.
Information about the local time has to be set with the function block
SetTimeZonelnfo.

Report invalid time

If set to true, the status of the received timestamp is reported in the
Status field with previously unused bits. See below for details.

Status Conversion

The IEC task can convert the data point status information from the for-
mat used by input modules (OPC status values) to the status format
used by IEC104 and back. This status conversion is done for all data
types that use the status bits definitions for binary and analog data
types. Among the standard data types of the IEC104 protocol, these
are data types 1 - 14 and 30 - 36.

NONE No status conversion. Conversion has to be done in
the controller.

OPC_STD Standard conversion for the data types given above.
OPC_ALT [Not implemented].

The Encoding / Decoding function blocks in the supplied libraries as-
sume that this parameter is set to OPC_STD.

Data type translation

Normally IEC data points are passed directly through the ClI board. In
some cases data points of certain data types have to be sent using a
different type, e.g. during a General Acquisition a data point of type 30
(Single Point with time) is sent as type 1 (Single point without time).
Which data point types are translated is defined in the conversion list.
This parameter determines if the translation is performed or not.

If the incoming translation is performed, all data points of the config-
ured types are translated. E.g. a data point of type 1 is always changed
to type 30.

If the outgoing translation is performed, data types are translated dur-
ing a GA. ltis still possible to send data points of the "short" types.

NONE No type tranlation is performed.

IN Received types are expanded.

ouT Sent types are reduced when sent because of a GA.
BOTH Both received and sent types are transformed.

Command Max Act Wait

Maximum time in seconds that the IEC task waits for the activation
confirmation for a command.

If no confirmation is received, the command is cleared and a negative
acknowledge is sent.

If Command Termination or SetPoint Termination (whichever ap-

plies) is 0, then this is the time the command will stay active before it is
cleared.

2018-10-19

11782

8VAT005003T0001

2018-10-19

Cl864

Command Max Term
Wait

Maximum time in seconds that the IEC task waits for the activation ter-
mination after the activation confirmation was received.

If no confirmation is received, the command is cleared and a negative
acknowledge is sent.

Command Termination

Number of messages that are used to confirm a command. Among the
standard data types, this is used for data types 45 - 47, 51 and 58 - 60
and 64.

0 No confirmation.
1 One confirmation message (activation confirmation)
2 Both activation confirmation and activation termina-

tion are used.

SetPoint Termination

Same as Command Termination, except that this parameter applies
to SetPoint data types. Among the standard data types, this is used for
data types 48 - 50 and 61 - 63..

Command clear wait

Time after a command has finished when it is cleared. The command is
cleared by sending it to the controller with a COT of 0.

Request GA

Determines if and when the IEC task requests a GA (General Acquisi-
tion) from the IEC partner.

NO Never.
CONNECT After a connection is established.

ACTIVATE When the active partner establishes a connection
and when a previously passive partner becomes active.

BG Data Send

Determines if and when the IEC task sends its data to the IEC partner
with a background scan. This can be used in place of a GA if the IEC
partner does not request a GA on its own for some reason. This should
also be used in a fully redundant system (2 partners on each side with
a total of 4 connections) as it is possible that no GA request will be an-
swered in certain configurations.

NO Never.
CONNECT After a connection is established.
ACTIVATE When the active partner establishes a connection

and when a previously passive partner becomes active.

BG Send Cycle

[Not implemented, 0].

BG Tele Send Wait

Time in milliseconds between telegrams sent during a background
scan.

Use delay buffer

Since the function blocks in the controller are executed cyclically, it is
possible to miss data changes when data messages of the same data
point if they happen faster than the cycle time of the receiving applica-
tion. If this feature is enabled, a delay buffer enforces a minimum delay
between data messages for the same data point from the CI to the con-
troller. Which data types are affected is configured in the conversion
list.

Msg delay

Minimum delay between messages. If a second message for the same
data point is received before this time is elapsed, the second message
is delayed so it is sent to the controller after this delay time.

This time must be at least as long as the cycle time of the receiving
task, it is recommended that it is about two times that, especially if the
task has a short cycle time.

Msg max delay

Maximum time that a message is delayed. Mainly used so a message
that is sent very often (e.qg. it toggles continuously because of a faulty
input module) does not "block" the receiving of this message for a long
time.

Use trans data buffer

Contrals if the Transparent Data buffer is used. This buffer translates
transparent data messages to/from data point items.

Currently the Transparent Data buffer is only used for Disturbance
transmission. If Disturbance transmission type is NONE, set this to
FALSE, otherwise set it to TRUE.

Trans data width

Number of data points that the transmission buffer uses.
Currently only with of 16 is implemented.

Trans data delay

Delay between data point changes. Should be at least 2 times the cy-
cle time of the involved application tasks in the controller.

12782

8VAT005003T0001

3.4

2018-10-19

Cl864

Trans data channels

Number of channels; currently only a setting of 1 or 2 is possible. 2
channels are used for redundant configurations.

Disturbance transmis-
sion type

NONE Disturbance transmission not used.

103M 103 Master, used with 104S. [Not implemented)].
103MTP 103 Transparent Master used with 104SAT.
104s 104 Slave, used with 103M. [Not implemented].
104SAT 104 SAT Slave, used with 103MTP.

DisTransMsg timeout

Timeout for answers to transmission requests.

DisTransChanl

Primary transmisson channel, normally 0.

DisTransChan2

Secondary transmission channel, normally 1.

DisTransCmd queue
size

Size of queue for transmission messages in command direction.

DisTransMsg queue
size

Size of queue for transmission messages in monitoring direction.

DisTransSATCmdIOA

Information Object Address of command messages for disturbance
transmission. Used only if Disturbance transmission type is 104SAT.

DisTransSATMsglOA

Information Object Address of data messages for disturbance transmis-
sion. Used only if Disturbance transmission type is 104SAT.

IEC60870 Station Settings

These parameters apply to one station connected through an IEC partner.

Parameter Description

Link Address Link Address of the station. Set to O if the Link Address is not relevant. Sta-
tions can share the same Link Address, e.g when one physical station has
two logical stations or if the data of a second station is routed through the
first.

Poll Delay Delay between poll telegrams in milliseconds. This delay is only used when
the slave device does not have any data to send.
Only relevant for the Master station in a master-slave setup.

Poll Options Polling options.

This is a bit mask, setting certain bits will activate special configuration op-
tions. See below for details.

Only relevant for a master-slave setup.

Partner Common
Address

Common Address of the partner station. This address is used for system tel-
egrams sent to that station.

Data messages can be sent and received with arbitrary addresses.

Originator Address

[Not implemented, 0].

Initialisation han-
dling

This parameter determines if and how a received End-Of-Initialisation tele-
gram is handled.

NONE No special handling.

GA A GAiis requested.

TIMESYNC A GAis requested. Only TimeSync messages are sent
before the EOI telegram is received.

DATA A GAis requested. No data messages are sent before the

EOI telegram is received.

Send time sync

Time synchronization interval in seconds.

If this is 0, no Time Sync telegrams are sent, otherwise Time Sync tele-
grams are sent at this frequency. If not 0, a Time Sync telegram is also sent
when the connection is established.

Options

Options for this station at the Partner/Message level.

This is a bit mask, setting certain bits will activate special configuration op-
tions. See below for details.

13782

8VAT005003T0001 Cl864

3.5

3.6

3.7

2018-10-19

Network Configuration

There are three main network configuration options:

e Single Interface.
One network interface and a single IP address. Only the Primary IP Address parameter
contains a valid IP address.

« Virtual Second Interface.
One network interface but two seperate IP addresses. The Use Redundant Network pa-
rameter is false and the Secondary IP Address parameter contains a valid IP address.

e Physical Second Interface.
Two seperate network interfaces. The Use Redundant Network parameter is true and the
Secondary IP Address parameter contains a valid IP address. [Not implemented].
The current hardware (CI857) does not support this configuration.

Protocol Type

Determines which protocol is used by this IEC task.
Currently IEC104, 101 an 103 are implemented.

Some other protocols are implemented, but not released for general use, mainly because these
protocols have not been tested with the full range of configuration options but only with the specific
configuration needed for a particular project. The implementation of these protocols may also be
missing certain features.
All the protocols can be used, but any protocol other than IEC104 should only be used after specific
consultation with ABB Vienna.

Value Description
IEC104 IEC 60870-5-104 Protocol.
This type always uses a balanced point-to-point communication.
IEC101Balanced IEC 60870-5-101 Protocol in Balanced mode.
Implemented, not released for general use.
IEC101Master IEC 60870-5-101 Protocol as Master in Unbalanced mode.
A master can connect to one or several stations.
Implemented, not released for general use.
IEC101Slave IEC 60870-5-101 Protocol as Slave in Unbalanced mode.

A slave can share a "party line" with several other slaves; it ignores all
telegrams that are not addressed to its Link Address.

Implemented, not released for general use.

IEC103Master IEC 60870-5-103 Protocol as Master.
A master can connect to one or several stations, typically protection re-
lays.

IEC103Slave IEC 60870-5-103 Protocol as Slave.

A slave can share a "party line" with several other slaves; it ignores all
telegrams that are not addressed to its Link Address.

Implemented, not released for general use.

Other Other protocols. The specific protocol to be used is specified with the
Partner Type setting.

Both IEC101/103-Master and IEC101/103-Slave use half-duplex transfer. That is the slave only
sends data as a response to a request from the master. This allows a multi-drop configuration.

Partner Type

The Partner Type setting is treated as a bitfield, that is the values of different settings are added
together to calculate the value for this parameter. It is used for various settings that do not currently

14782

8VAT005003T0001

2018-10-19

Cl864

have their own parameter. It is intended that new parameters will be created for these settings at a

later date.

Value

Description

0x8000 / 32768

Commands use Originator Address.

If this option is set, Commands get/put the Originator Address in the upper
word of the COT instead of using the Originator Address setting.

With this the Originator Address of received Commands can be reflected
back in the confirmation messages.

0x4000 / 16384

CA Offset for RT messages.

Use a CA (Common Address) offset for received messages with time
(CV_DTT_REDUCE in CV).

If Data Type Translation for incoming messages is used, both messages (RT
and non-RT e.g. ADSU types 30 and 1, respectively) will be received with
the type with the expanded type (the type with a timestamp, e.g. 30).

0x2000 / 8192

Clear Buffer.

If this option is set, the any data received directly (2 seconds) after estab-
lishing the communication link is discarded. This delays establishing the
connection at the higher protocol layers, but prevents cases where the con-
nection cannot be properly established because a device in the connection
(comm server) buffers received data.

This option is only applicable to serial protocols that use an external Com
server (not IEC 60870-5-104). It is recommended to set this option for all se-
rial connections, but it should definitely be set for balanced transmissions
and when the CI864 implements a slave.

0x1000 / 4096

High Priority Polling.
Decrease idle times in flow control loop. Should be used for serial protocols,
only for one Partner and only if the CI864 board does not have to handle

many connections. Using this option increases the CPU load of the CI864
board.

Mask: OxOF00

Protocol Mask.

0x0000/ O

No special selection. Use this value for all Protocol Types except "Other", in
which case this setting is not allowed.

0x0100 / 256

SAT 1703 protocol.
Implemented, not released for general use.

0x0400 / 1024 135 Master.
Implemented, not released for general use.
0x0500 / 1280 135 Slave.

[Not implemented].

0x0600 / 1536

Allen-Bradley Master.
Implemented, not released for general use.

0x0700 / 1792

Allen-Bradley Slave.
[Not implemented].

0x0800 / 2048

Allen-Bradley Balanced (Full Duplex).
[Not implemented].

Mask: 0x00CO

Command buffer size

Maximum number of concurrent commands per Partner.
0x0000 /0 4 commands

0x0040 /64 12 commands

0x0080 /128 30 commands

0x00CO0 /192 64 commands

This setting configures how many commands the Partner can handle at the
same time. A command occupies one of these slots until it is finished (termi-
nation message sent/received or it times out) and the additional Command
clear wait time has elapsed.

15/82

Cl864

Ignore data items with the "Blocked" bit set in the item status.
Ignore data items with COT=2 (BG GA).

Use weekday field in timestamp. If this option is set, the weekday field is set
according to the current date, otherwise it is 0.

The weekday field is ignored in received telegrams.

Always send the GA data on the passive partner. This has priority over bit 1
(send only on active partner).

If neither bit is set, the Redundancy setting determines if the GA data is sent
on the passive partner. If the passive partner of handles Outgoing Monitor-
ing data, then the GA data is sent.

Use Generic Data services. Used for IEC103 protocol.

When a partner becomes active and requests a GA, send a single GA re-
quest to the broadcast address instead of individual GA requests to every
station.

The partner only sends data in response to GA requests if it is active, the
passive partner confirms the GA requests but does not send any data.

8VAT005003T0001
0x0020/ 32
0x0010/ 16
0x0008/ 8
0x0004/ 4
0x0002/ 2
0x0001/ 1
0x0080 / 128

3.8

3.9

2018-10-19

SAT protocol has RT (Real Time) data stream. Used for SAT1703 protocol.

With the SAT protocol only the 0x0040 / 64 bit can be used to configure the
concurrent commands (4 or 12).

Poll Options

The PollOptions setting is treated as a bitfield, that is the values of different settings are added to-
gether to calculate the value for this parameter. It is used for various settings that do not currently
have their own parameter. It is intended that new parameters will be created for these settings at a
later date.

Currently this entry is only used by the IEC101 Master and IEC103 Master.

Value

Description

Options

The Options setting is treated as a bitfield, that is the values of different settings are added to-
gether to calculate the value for this parameter. It is used for various settings that do not currently
have their own parameter. It is intended that new parameters will be created for these settings at a
later date.

Value

Description

0x0080 / 128

Use Link Address of this Station as the Own Link Address.
Only used for IEC101 Balanced.

0x0040/ 64

Use Second Messages for one flank items.

Data types and IOA address ranges that can use this feature must be con-
figured through the conversion list.

The Delay Buffer must be used for this to work (otherwise the second mes-
sage will overwrite the first message and it will be lost).

0x0020/ 32

Ignore Station on primary connection.

16/82

8VAT005003T0001

3.10

2018-10-19

Cl864

0x0010/ 16

Ignore Station on secondary connection.

This option and the one above only apply to GA Requests and Time Sync
telegrams. Setting both is allowed but not particularly useful. Should nor-
mally not be set for a station that is used for a broadcast GA (see option 2
below).

0x0002/ 2

Send a GA resquest to this station to to the broadcast address instead of the
configured station address. May only be used for the first station.

0x0001/ 1

Send a GA request to this station only in response to an End-of-Initialisation
telegram, but not when the connection is established. Usually this option is
combined with setting that a broadcast GA is sent and the Initialisation
Handling parameter is GA or higher.

IEC 60870-5-101 & -103 Specific Settings

When a partner is configured for IEC 101 and IEC 103 protocols, some of the parameters are used
differently.

Parameter / Value

Description

Partnertype:

0x2000 / 8192

Clear Buffer.
Applicable here, should usually be used, description above.

Control Connection

Balanced: Physical Transmission Direction. Sets the "DIR" bit for sent
telegrams.

Master, Slave: Not used.

Timeout Seconds Of
Send Or Test APDUs (t1)

Master, Balanced: Time to wait for response before retry.

Slave: Time between requests from the master before the connection
is set bad.

In 100* milliseconds (e.g. 35 give a time of 3.5 seconds).

Timeout Seconds
Acknowledge No Data
Message (t2)

Balanced: Time between test frames, in seconds.

Master, Slave: Not used.

Timeout Seconds Send-
ing Test Frames (t3)

Start delay.

Max Diff Receive Se-
quence Number (k)

Master: Maximum number of poll telegrams before another station is
polled. Must be at least 2.

Slave, Balanced: Not used.

Latest Ackn After Number
Of I-Format (w)

Master, Balanced: Max. Number of retries.

Slave: Not used.

Poll Options

0x0010/ 16

Change Stations if an "ldle Telegram" is received. Which ASDU types
are considered "ldle Telegrams" is defined by the Converion List.

0x0008/ 8

Don't use test telegrams.

If this option is set, no test telegrams are sent. Some stations don't
answer to this telegram. Link initialisation or Reset FCB telegrams
are used to establish connection to a station.

Normally test telegrams are only sent to determine the state of the
slave station, e.g. when it has stopped data transfer with the DFC bit.

Set this option for IEC103.

0x0004/ 4

Use "Reset FCB" telegrams instead of "Init Link" telegrams.
Set this option for IEC103.

17/82

8VAT005003T0001

3.11

3.12

2018-10-19

Cl864

0x0002/ 2

Test telegram before Init telegram.

If this option is set, test telegrams (request link status) are sent to a
station after an interruption until a positive response is received and
then the communication is initialized with a link initialisation telegram.

If this option is not set, link initialisation telegrams are used to deter-
mine the connection status and initialize the connection.

0x0001/ 1

Poll High Priority first.

If this option is used, the first poll telegram sent to a station after an
interruption or after a different station was polled is a request for
class 1 data (high priority data), otherwise it is a request for class 2
data. If a slave station sends most or all of its data as class 1 data
this can speed up data transfer.

SAT 1703 Specific Settings

When a partner is configured for SAT 1703 protocol, some of the parameters are used differently.

Parameter

Description

TimeoutSecondsOfSen-
dOrTestAPDUs_t1

Time to wait for response before retry.
In 100* milliseconds.
(Old default 5 sec or 50)

Timeout Seconds
Acknowledge No Data
Message (t2)

Time after which a sent telegram is automatically acknowledged. Used
for unacknowledged data transfer. Set to 255 if this feature is not used
(acknowledged data transfer).

In 100* milliseconds.
(Old default 255, no auto-ack, when used 2 sec or 20)

Timeout Seconds Sending
Test Frames (t3)

Test telegram cycle.

Max Diff Receive Se-
quence Number (k)

If 1, only one buffer is used, if >1, two buffers are used.

Add 16 if Acknowledge telegrams may not be sent as part of data tele-
grams.

Latest Ackn After Number
Of I-Format (w)

Max. Number of retries.

No Of Octets In Common
Address

Number of bytes (octets) used for the Common Address.
Always 1 for the SAT1703 protocol.

No Of Octets In Info Obj
Addr

Number of bytes (octets) used for the Information Object Address.
Always 2 for the SAT1703 protocol.

135 Specific Settings

When a partner is configured for 135 protocol, some of the parameters are used differently.

Parameter

Description

TimeoutSecondsOfSen-
dOrTestAPDUs_t1

Time to wait for response before retry.
In 100* milliseconds.

Timeout Seconds Not used.
Acknowledge No Data

Message (t2)

Timeout Seconds Sending | Start delay.
Test Frames (t3)

Max Diff Receive Se- Not used.

quence Number (k)

Latest Ackn After Number
Of I-Format (w)

Max. Number of retries.

No Of Octets In Common
Address

Number of bytes (octets) used for the Common Address.
Ignored, always 1 for the I35 protocol.

No Of Octets In Info Obj
Addr

Number of bytes (octets) used for the Information Object Address.
Ignored, always 10 bits for the 135 protocol.

18/82

8VAT005003T0001

Cl864

Status Conversion

The 135 protocol always uses the equivalent of the OPC_STD Stand-
ard conversion.

Data type translation

For the I35 Master this should be set to IN or BOTH if data items with a
time stamp are received, since the data items are always sent without
a timestamp during the GA.

Command Max Act Wait

Maximum time in seconds that the IEC task waits for the activation
confirmation for a command.

Command Max Term Wait

Not used.

Command Termination

Ignored, the 135 protocol always sends one confirmation message.

SetPoint Termination

Ignored, the 135 protocol always sends one confirmation message.

Command clear wait

Time after a command has finished when it is cleared. The command
is cleared by sending it to the controller with a COT of 0.

Request GA The 135 Master always issues Read-Type-Value telegrams for Group
Types 1 (Simple Input) and 5 (Measurands).
(Equivalent to CONNECT.)

Options (Station)

0x0008/ 8 Use Group Type 8 (Double Inputs)

3.13 Allen-Bradley Specific Settings

2018-10-19

When a partner is configured for Allen-Bradley protocol, some of the parameters are used differ-
ently.

Parameter

Description

Link address size

Type / Length of checksum:
0: None

1: 1 Byte BCC

2: 2 Byte CRC.

TimeoutSecondsOfSen-
dOrTestAPDUs_t1

Time to wait for response / ACK before retry. (TO1)
In 100* milliseconds.

Timeout Seconds
Acknowledge No Data
Message (t2)

Start delay.

Timeout Seconds Sending
Test Frames (t3)

Balanced: Time to wait before sending Test telegrams (Diagnostic
Loop) after no data was sent in seconds.

Slave: Not used.

Max Diff Receive Se-
quence Number (k)

Master: Maximum number of poll telegrams before another station is
polled. Must be at least 2.

Slave, Balanced: Not used.

Latest Ackn After Number
Of I-Format (w)

Max. Number of retries.

Disturbance transmission
type

Nust be set to NONE. Disturbance transmission is not supported, some
of the parameters are used for other purposes.

DisTransMsg timeout

Time to wait for response to command (TO23).

Master, Slave: Not used.

DisTransChanl

Options (Bitfield):

19/82

8VAT005003T0001 Cl864

2018-10-19

1: Raw Data Mode: If set, Data telegrams do not use normal Allen-
Bradley Data block structure (DST, SRC, CMD, STS, TNS, FUNC) but
all the ingoing / outgoing data is sent as a single data block of x words.

2: Optimize incoming data: If set, incomind data telegrams are checked
for changes and only sent to the 1131 application if the data was
changed. (Only applicable if Raw Data Mode is set).

4: Slave Mode: DI/Al is outgoing, DO/AO incoming. (Not applicable to
Raw Data Mode).

8: Extra Configuration. Non-standard addressing used, this requires a
special system telegram to configure the addressing of the different
data areas. The HW parameters for these will be ignored (Not applica-
ble to Raw Data Mode).

DisTransChan2

DisTransCmd queue size

DisTransMsg queue size

DisTransSATCmdIOA Raw Data Mode: Size of outgoing Data Area in Words (Address starts
with 1)
Currently the Size is limited to 32 Words.

Not Raw Data Mode: Size of DI and DO Data Area in Words: DI Size +
65536*DO Size. Size 0 is the default size (499).

DisTransSATMsglOA Raw Data Mode: Size of incoming Data Area in Words (Address starts
with 1)
Currently the Size is limited to 32 Words.

Not Raw Data Mode: Size of Al and AO Data Area in Words: Al Size +
65536*A0 Size. Size 0 is the default size (499).

The Own/Partner Common Addresses are used as follows: The Station Address in the Allen-Brad-
ley protocol is only 1 byte, the Common Addresses are built from both:

The Own Common Address should be set to SRC + DST * 256.

The Partner Common Address should be set to DST + SRC * 256.

SRC is the Source Station Address, DST is the Destination Station Address.

In Raw Mode the Data Areas are addressed as follows:

The Common Address is the Common Address of the Slave for Data in both directions.

The Information Object Address is 1 to x (x is the size of the Data Area) for outgoing Data (use
ASDU Type 9, RAW_OUT) and 1025 to 1024+y (y is the size of the Data Area) for incoming Data
(use ASDU Type 8, RAW_IN).

20/82

8VAT005003T0001 Cl864

4

4.1

4.1.1

4.1.2

4.1.3

2018-10-19

Section 4 - Software Configuration

This section describes how to implement the data transfer in a 1131 application.

General concepts:

Status Codes

The IEC60870 Read / Write function codes use the following numbers as output on the Status pin:

Value Description
<0: An error has occurred.
0: Function block is starting up or processing data. The Receive block uses this
number to indicate that no data has yet been received.
1: Function block has processed the last request or delivered valid data.

IEC60870WriteCyc only, new data is requested to be written before the previ-
ous request has been satisfied.

9: The function block is in idle state, that is not Enabled and has finished shut-
ting down the connection to the protocol handler. This result can be used to
disable the function block completely when it is not needed to save CPU

time. The following logic will usually work: EN := Enable OR (Fb.Status<>9);

Data Sharing

More than one IEC task / IEC partner can share the same data (Read and Write function blocks) if
they have the same non-zero value for the HW parameter 'Data Sharing ID'.

If this function is used, several rules have to be obeyed:

All Read and Write function blocks must use the connection Id variable of the Connect block of the
first partner (the one with the lowest Partner Position) and this Connect block must be the first to be
enabled. Obviously, the connection Id variable must be valid for any Read or Write function block to
execute.

Connect function blocks are required for all partners in the group, however.

It is possible to read data if only some IEC tasks are connected, but it will (obviously) only return
results from the connected tasks.

Data should only be written after all the IEC tasks are connected, otherwise it will only be written to
the tasks that are currently connected. IEC tasks that are connected later will only receive the data
if it changes afterwards or the Write function block is disabled and re-enabled.

It is recommended to use the Valid pin of the first Connect block as the Enable pin for the next Con-
nect block. The Read and Write function blocks should only be enabled once all the Connect blocks
are valid.

These rules also apply to the function blocks from the IEC60870SupLib that wrap Read and Write
function blocks.

Structured Data Types

Structured data types are defined for all the implemented ASDU types. While it is possible to use
standard data types to transfer data from/to the IEC protocol, in most cases it makes more sense to
use the structured data types.

The first item in each type is a dint constant initialized with the ASDU type number. The second
data item is used for the most important data field of the ASDU type. This is the only field that can
be transferred if a basic data type is used rather than a structured type. For most data types it
makes sense to use more than the first data field, for some it is needed. Unless memory usage on
the AC800M controller is a real problem, it is recommended to use the structured data types.

In SV 5 many data types have been extended with additional information, making it almost impossi-
ble to use anything but the structured data types.

21/82

8VAT005003T0001 Cl864

4.1.4

4.1.5

2018-10-19

The fields in the structured data type do not have to be in the same order as the data fields in the
IEC telegram. The conversion list defines how the structured variable is translated into the IEC type
and vice versa.

Status Conversion

If desired, the CI864 module can translate the IEC telegram status bits into the OPC status values
used by AC800 I/O modules. If the HW parameter 'Status Conversion' is "NONE" the status is
simply copied and the IEC status bits have to be set / decoded by the 1131 application.

If the HW parameter 'Status Conversion' is "OPC_STD" the CI864 translates the status codes used
in binary and analog monitoring status types. These are ASDU types 1 - 14 and 30 - 36 in the com-
patible range.

When receiving telegrams, the following rules are used (the last applicable rule is used):
If no IEC status bit is set, the status is OPC_QUALITY_GOOD (0xCO0).

If the SB (simulated) bit is set, the status is OPC_QUALITY_LOCAL_OVERRIDE (0xD8).
If the IV (invalid) bit is set, the status is OPC_QUALITY_BAD (0x00).

If the NT (not topical) bit is set, the status is OPC_QUALITY_ABB_ISP |
OPC_QUALITY_DEVICE_FAILURE (0x10000C).

If the OV (overflow) bit is set, the OPC_LIMIT_LOW (0x01) bit is set (in addition to one of the above
codes).

When sending telegrams, the following rules are used:

Status quality OPC_QUALITY_BAD (0x00) or OPC_QUALITY_UNCERTAIN (0x40):

If the OPC_QUALITY_ABB_ISP (0x100000) is set, the status bit NT (not topical) is set, if not the IV
(invalid) bit is set.

Status quality OPC_QUALITY_GOOD (0xCO0):

If the status is OPC_QUALITY_LOCAL_OVERRIDE (0xD8) the SB (simulated) bit is set, if not no
IEC status bits are set.

If any Limit status bits are set OPC_LIMIT_LOW (0x01) or OPC_LIMIT_HIGH (0x02), the OV (over-
flow) bit is set.

When configured, the quality of the timestamp is indicated by the following bits:

OPC_QUALITY_TIME_INVALID (0x01000000): The timestamp was received with the invalid
timestamp bit set.

OPC_QUALITY_TIME_SUBST (0x02000000): The timestamp was substituted. Used with data type
translation when a telegram without a timestamp is translated into one with a timestamp. When
sending data this bit (as well as the previous one) will cause the timestamp to be marked as invalid
if set.

OPC_QUALITY_TIME_IGNORE (0x04000000): Used only when sending data. Causes the
timestamp on the structured variable to be ignored.

Timestamp Handling

Normally a timestamp in the protocol is directly copied (after translating it) into the structured varia-
ble (or vice versa). The timestamp in a structured variable is alway in UTC. Several special cases
are handled as described below:

When receiving telegrams, the following rules are used:

If a valid and complete timestamp is received, it is used as is. If the CI864 is configured to use local
time (HW parameter 'Use Local Time' is true), then the timestamp is converted to UTC using the
rules set through the SetTimeZonelnfo function block.

If a partial timestamp is received (e.g. a timestamp that contains only seconds and minutes but not
the hour or date), then the missing information is filled in from the current system time. If this puts
the resulting timestamp too far into the future, it is shifted into the past.

E.g. when the timestamp contains only minutes and seconds and the resulting timestamp is more
than 5 minutes in the future, one hour is subtracted from the timestamp.

When an invalid timestamp is received, it is ignored and the current system time is substituted. If
reporting invalid timestamps is enabled, this is indicated with a bit in the status entry in the struc-
tured variable.

22/82

8VAT005003T0001 Cl864

4.1.6

4.1.7

2018-10-19

When Data Type Translation is used, a current system time is used for telegrams without a
timestamp. If reporting invalid timestamps is enabled, the substituted timestamp is indicated with a
bit in the status entry in the structured variable.

When sending telegrams the following rules are used:

If the structured variable contains a valid timestamp this is used. If the CI864 is configured to use
local time (HW parameter 'Use Local Time' is true), then the timestamp is converted to local time
using the rules set through the SetTimeZonelnfo function block.

If not timestamp is used or the timestamp is Zero (all bits 0), then the current system time is used.

If reporting invalid timestamps is enabled and the bits in the status word that indicate an invalid or
substituted timestamp are set, the timestamp is marked as invalid.

When reporting invalid timestamps is enabled, another bit indicates that the timestamp should be
ignored. If this bit is set, the timestamp is handled as if it was Zero, as above. This bit has priority
over the invalid or substituted bits.

Invalid timestamp reporting is only used when the status conversion is OPC_STD and only for
monitoring types.

Data Type Translation

Normally each data item is always sent with the same data type. In other configurations a single
data item can be sent with different data types depending on the reasons why a telegram is sent.
According to a strict interpretation of the IEC spec, data types that include a timestamp are sent as
the corresponding type without a timestamp during a GA (General Acquisition). Data Type Transla-
tion is used to hide this behavior from the 1131 application.

Data Type Translation only affects data types for which a translation rule has been defined in the
Conversion List.

Expand Incoming Data Types:

If this option is used, incoming data types without a timestamp are translated into the correspond-
ing type with a timestamp. The current system time is used for the timestamp.

All received telegrams with the affected data types will be translated. If some data items actually
use the data type without the timestamp, they are also translated and the structured type for the
data type with the timestamp has to be used in the 1131 application.

Reduce Outgoing Data Types:

If this option is used, data types that normally contain a timestamp are sent as the corresponding
type without a timestamp during a GA (General Acquisition). It is possible to send data items of the
type without a timestamp; they are not affected by this setting.

Using Dummy Data Items to reduce the number of Function Blocks

The function blocks used to receive and send data (and to a lesser extend the blocks used to
en/decode the data have a significant overhead to set up the data connection and such. It takes a
lot less resources (memory and CPU load) to use one function block to send three data items than
to use three function blocks that send one data item each.

Combining the blocks is only feasible if the addressing of the data items follows a regular pattern,
since the Receive and Write blocks use a starting address (InformationObjectAddress input pin)
and a offset (InfoObjAddr_StepSize input pin) that is added for each following data item. For exam-
ple, one common "addressing system" is set up similarly to the way Hardware addresses are used:
The first byte of the address (IOA1) is based on the data type (it identifies the type of "input/output
module"), the second byte (IOA2) gives the number / position of the "module” while the third byte
(IOA3) gives the signal within the "module" (counting up from 0 to 15).

When the addressing does not follow such a scheme closely, it is sometimes still possible to com-
bine function blocks by using dummy data items in between the real data items. This can also be
used if the addessing system uses a clear pattern but data items are removed during the imple-
mentation process and the resulting gaps in the addressing are not filled so that the addresses of
existing items is not changed.

For example, if data items with addresses 1,2, 4 and 5 are sent, one could either use two function
blocks with a starting address of 1 and 4 (and a step size of 1) or use one function block with an
additional dummy data item for address 3.

23/82

8VAT005003T0001 Cl864

4.1.8

4.18.1

2018-10-19

Points to consider when combining function blocks:

« Dummy data items connected to a Write block are actually sent to the partner. With most
partners this is not a big problem as unconfigured data items will simply be ignored, but that
is not always the case. If the number of dummy items is high, this can slow down the data
transmission. Since the dummy data items don't change their value, they will typically only
be sent once (during the Initialisation).

< If the number of dummy items is high, it may cause more overhead than splitting the function
blocks: If data items with addresses 1, 2 and 4 are sent, it makes sense to add one data item
with address 3; if data items with addresses 1, 2 and 15 are sent, it probably does not make
sense to add 12 data items for the addresses 3 to 14. On the other hand, having the dummy
items connected to the function blocks makes it easy to replace them with actual data items
if more data items are added later on.

« Depending on the protocol and the settings for it, sending several data items with a single
function block can be faster, because changes to two signals that happen during the same
task cycle can be sent as one message if the two signals are connected to the same block,
while they must be sent as two seperate messages if they are connected to two different
blocks. The specifics of how this is handled depend on the protocol and data types.

< All data items connected to a single Receive or Write block must use the same data type. If
you are sending binary signals with addresses 1, 2 and 4 and an analog signal at address 3,
then you must split the function blocks (use one block for addresses 1 and 2, one for ad-
dress 3 and one for address 4).

In addition, dummy data items must not be used for addresses at which a data item with a
different type is configured. In the above example, you can't use one function block for the
three binary signals with a dummy binary data item at address 3.

When sending data, this can mess up the data item cross reference in the Cl board, possibly
crashing it.

When receiving data, this can cause the controller to crash as the data for one data type is
copied into a data structure meant for a different data type.

< With most Encode / Decode function blocks in the libraries dummy data items can be indi-
cated by setting the Status entry of the BoollO / ReallO (not of the structured variable con-
nected to the Receive / Write block) to 16#FFFFFFFF. This will cause the block to skip copy-
ing the data for this item and reduce the CPU load.

« When receiving data items, one should make sure that no data items with the same address
as a dummy item are sent by the partner. This is not a problem if the data items have the
same type as the dummy item, but it can crash the controller if they have a different type.
The Protocol Handler version 2.0/16 (HW library 1.1.72) introduces the possibility for the Re-
ceive block to perform a type check and only copy data of the correct type.

The IEC Library 2.0.29 adds the possibility to use Receive Type Separation (RTS; see be-

low). When RTS is used, each data type uses a separate address space. This relaxes the

rules of using dummy items in Receive blocks as an analog signal with address 3 will actu-
ally have a different address than a binary signal with address 3.

Receive Type Checking and Receive Type Separation

In some cases the IEC Partner sends a data item on a given address with a different type than is
used in the Receive block for that address or the IEC Partner sends data items with different types
on the same address (this is allowed in some IEC-104 implementations). The Protocol Handler
(PH) does not know that there is a mismatch between the received data and the configuration of
the Receive block and will copy data into a data structure that can't contain that data. This can
crash the controller. The crash can either occur directly after the data is received or when the con-
nection is broken or disabled.

There are two options to work around this problem:

Receive Type Checking (RTC)

This option is available in the Protocol Handler version 2.0/16 (CI864HWLib 1.1.72) or higher.

Receive Type Checking (RTC) is activated by specifying the negative of the data type on the pin
IECDataTypeToUse (e.g. use -30 to specify data type 30). If data of a different type is received it is
discarded by the Protocol Handler instead of copying it to the Rd variable of the Receive block.

For some Function blocks (especially combined Receive/Decode blocks) this option is activated by
setting the Project Constant clEC101.ReceiveTypeCheck to true.

24/82

8VAT005003T0001 Cl864

4.1.8.2

4.1.8.3

2018-10-19

RTC is can be used for all protocols.

Receive Type Separation (RTS)

This option is available in the IECCommLib 2.0-29 or higher and requires a Cl Firmware with Build
number 597 with a date 22.11.2011 (CI864HWLib x.x.54) or higher. RTS only works together with
Data Type Translation (DTT) for incoming signals (IN/BOTH) with a CI Firmware Build number 703
with date 8.7.2015 (CI864HWLib x.x.88) or higher.

Receive Type Separation (RTS) is activated by setting the Project Constant clEC101.UseTypeOff-
set from O (the default) to 536870912. Exactly the given value must be used. When RTS is acti-
vated the data type to be used must be specified on the pin IECDataTypeToUse (use 30 for data
type 30) for the data types for which RTS is defined (currently monitoring and command ASDU
types 1 to 63).

When RTS is used each data type uses its own address space (the data type is used as an offset
to the data item address). The Receive blocks automatically perform the calculation of the address
offset if the RTS is enabled and the correct data type is specified. Function blocks that wrap Re-
ceive blocks (Command Send/Receive, combined Encode/Write and combined Receive/Decode
blocks set the Data type automatically when RTS is enabled.

RTS is currently only implemented in the Conversion List for the IEC-104 Protocol (and the -101
Protocol which uses the same data types) and only for ASDU types 1-37.

Currently RTS can only be combined with the "CA Offset for RT messages" option with a Cl Firm-
ware Build number 703 with date 8.7.2015 (CI864HWLib x.x.88) or higher.

Choosing RTC or RTS

Below are given some points to consider when deciding to implement RTC and/or RTS.

< If a given configuration has run for a time without problems, then it is not recommended to
implement either RTC or RTS ("Never touch a running system"). If the decision to implement
RTC or RTS is made, it is recommended to implement them during a major revision or sys-
tem upgrade when there is enough time to test the changes before the plant has to return to
productive use.

e Neither RTC nor RTS can guarantee that the controller does not crash if bad data is re-
ceived from the Partner. We have not been able to investigate this problem properly as the
crashes occur only occasionally and often only in a setup that we could replicate in the lab.

« RTC and RTS require using structured variables on the Receive blocks. Both require the Re-
ceive blocks to be properly configured (the correct data type must be specified on the pin
IECDataTypeToUse or the Receive blocks will not work properly.

e« RTC and RTS have different requirements:

RTS needs 800xA SV 5.1 or higher. It can be used with any data type or protocol.

RTC can be used with both 800xA SV 5.0 or higher as long as the required version of the ClI
Firmware and IEC SW Libraries are used. RTS only applies to the data types for which it is
configured.

< If both are available RTS is the recommended option unless one of the following points
makes it impracticable.

« RTC can be enabled or disabled separately for each function block. For some function
blocks that wrap Receive blocks it can be enabled by setting the Project Constant
clEC101.ReceiveTypeCheck.

« RTS is enabled by setting the Project Constant clEC101.UseTypeOffset from 0 (the default)
to 536870912. When RTS is enabled or disabled it is recommended to reset (clear the
memory and download the new configuration to the empty controller) all affected controllers
as the Cl modules may crash when the changed configuration is downloaded online.

e RTS always applies to all controllers in a Project. When RTS is enabled the correct data type
must be specified on all Receive blocks on the pin IECDataTypeToUse. If RTS is disabled
later on the pin IECDataTypeToUse must be set back to O (or empty as O is the default
value).

e With a Cl Firmware Build number 703 with date 8.7.2015 (CI864HWLib x.x.88) or higher
RTS can be combined with the "CA Offset for RT messages" option. In this configuration use
clEC60870.SYS_MSG_CA_OFFSET_ASDU for non-RT Messages,

e CcIEC60870.SYS_MSG_CA_OFFSET_RT for RT Messages and

e CcIEC60870.SYS_MSG_CA _OFFSET_ASDU_RT for RT Messages as offset for FBs that au-
tomatically add the RTS offset based on the ASDU type.

25/82

8VAT005003T0001 Cl864

4.2

421

4.2.2

2018-10-19

Software configuration with IEC60870CommLib:

The basic function blocks to configure the communication and data transfer are in the library
IEC60870CommlLib.

This library contains the following function blocks:

Function Block Description
IEC60870Connect
IEC60870Receive
IEC60870ReceiveSize Receive (Read) data from an IEC partner.
IEC60870WriteCyc Send (Write) data to an IEC partner.
IEC60870WriteCont Send (Write) data to an IEC partner.
IEC60870WriteSize Send (Write) data to an IEC partner.

It is recommended that the Connect function block is in the same task as the Read and Write func-
tion blocks. The behavior can be unpredictable if different function blocks are in different tasks with
different priorities and two function blocks are executed at the same time.

IEC60870ReceiveSize and IEC60870WriteSize are designed to be used inside other function
blocks with extensible parameters. Since the size (number of Extensible Parameters) must be de-
fined before the size of the calling function block is defined, these blocks can be used by defining
the maximum number of Extensible Parameters and then specifying the actual number when exe-
cuted.

All examples are given in structured text, but function block diagram can be used as well.

IEC60870Connect

This function block establishes the connection to the IEC partner or a pair of redundant IEC part-
ners. There must be one connect function block per IEC60870 Partner configured in the hardware
configuration.

When the En_C pin is set to true, this function block sends information about the connection to the
Cl1864 board (such as the conversion list) and enables the connection. The CIPos and
IEC60870PartnerPos pins identify the IEC partner. If this is successful, the Valid pin is set to true. If
not, the Error pin will be set to true for one cycle and the Status pin will indicate the reason for the
error.

To try again, the En_C pin has to be cleared and set again. If the error code is -7103, the En_C pin
should not be toggled off, this error is handled inside the Protocol Handler and the Connect block
will succeed once the error condition has be cleared.

The variable connected to the Id pin identifies this connection and must be connected to all
IEC60870Receive, IEC60870WriteCyc and IEC60870WriteCyc function blocks belonging to this
partner.

IEC60870Receive
This function block receives data sent by an IEC partner. It does not actually request data from the
IEC partner; it only returns data that the IEC partner sent on its own.

The Enable pin must be set to true and the Id pin must be connected to the Id variable from a valid
IEC60870Connect function block for this function block to work.

The CommonAddress pin gives the common address for all data elements.

The InformationObjectAddress gives the information object address for the first data element. The
information object address is increased by InfoObjAddr_StepSize for each following data element. If
InfoObjAddr_StepSize is 0, the function block will fail, even if only one data element is read.

26/82

8VAT005003T0001 Cl864

4.2.3

424

2018-10-19

The IECDataTypeToUse pin specifies the IEC data type or how it is found.

If IECDataTypeToUse is 0, then structured variables have to be used and the actual data type is
found in the first data element of the structure. All the data elements must be of the same type.
Structured types for many IEC data types are defined in this library.

If IECDataTypeToUse is greater than 0, then the value specifies the IEC data type and simple varia-
bles have to be used. Only the most important piece of information is returned (usually the value).

If IECDataTypeToUse is greater than 0 and Receive Type Separation is used, structured types are
used and this pin specifies the actual data type (only for data types that use RTS). This is only
available with IECCommLib 2.0-29 and higher.

If IECDataTypeToUse is less than 0, then structured variables have to be used (similar to using the
value 0). The type of the received data is checked and the data is only copied if the type of the re-
ceived data is the negative of the value given. e.g. if IECDataTypeToUse is -30, then the received
data is only copied if it is of type 30. This option is only available if the PH version 2.0/16 or higher
is used (HW library 1.x.72 or higher on SV5.1 or higher).

The Valid pin indicates if the data elements contain valid data (or at least some of them).

The NewData pin becomes non-zero whenever the Receive block has new data. This can be used
to optimize following logic so that is only executed when new data arrives.

The Status, Error and Warning pin contain information about possible errors.

The variables that receive the data are connected to the Rd[x] pins.

IEC60870ReceiveSize

This function block receives data sent by an IEC partner. It is very similar to IEC60870Receive but
adds a pin for the actual number of used extensible parameters.

The ActualSize pin defines how many of the defined extensible parameters are actually used. It
must be less or equal to the defined number of parameters (maximum 32).

IEC60870WriteCyc

This function block sends data sent to an IEC partner.

The Enable pin must be set to true and the Id pin must be connected to the Id variable from a valid
IEC60870Connect function block for this function block to work.

The CycleTime pin defines how often the data is sent to the CI864 board. It is only sent if it has ac-
tually changed. It is always sent once when the Enable pin becomes true.

In SV 5 the behavior of the CycleTime pin has changed: The default value of 0 seconds means that
the data is sent every cycle.

The RetryTime pin specifies how long the function block waits after an error before it retries the op-
eration.

The CommonAddress pin gives the common address for all data elements.

The InformationObjectAddress gives the information object address for the first data element. The
information object address is increased by InfoObjAddr_StepSize for each following data element. If
InfoObjAddr_StepSize is 0, the function block will fail, even if only one data element is written.

The IECDataTypeToUse pin specifies the IEC data type or how it is found.

If IECDataTypeToUse is 0, then structured variables have to be used and the actual data type is
found in the first data element of the structure. All the data elements must be of the same type.
Structured types for many IEC data types are defined in this library.

If IECDataTypeToUse is greater than 0, then the value specifies the IEC data type and simple varia-
bles have to be used. Only the most important piece of information can be specified (usually the
value).

If IECDataTypeToUse has the value TYPEID_IEC101_USE_DEFAULT_STRUCT, then a structured
variable has to be connected to the first pin. This variable defines the actual data type and default
values for the all data fields except the second field, but is not an actual data element. The data el-
ements are defined by simple variable connected to the following pins, same as when this pin has a
value > 0.

27/82

8VAT005003T0001 Cl864

4.2.5

4.2.6

4.3

2018-10-19

The ChangedValues pin is used to indicate if any values changed. If this pin is 0, the write block will
not send the data to the CI864 board. The data is always sent once after the Enable pin becomes
true. If this pin is non-zero, the write function block will send the data after checking it for changes.
The main use of this pin is to reduce the controller load if the check for changed data is already
performed by a preprocessing function block (See IEC60870SlaveLib).

Setting the ChangedValues pin to nonzero will not force the data to be sent to the IEC parner, it will
only ensure that the data is sent to the protocol handler. The protocol handler will only send the
data to the IEC partner if it has actually changed. If the data must be sent to the IEC partner (e.g.
Counter values that have to be sent at regular intervals even if they have not changed since the
last interval), resending of the data can be forced by disabling the function block and enabling it
again.

The Valid pin indicates if the data elements contain valid data (or at least some of them).
The Status, Error and Warning pin contain information about possible errors.
The variables with the data to be sent are connected to the Sd[x] pins.

IEC60870WriteCont

This function block sends data sent to an IEC partner.

This block is a simplified version of the IEC60870WriteCyc block. It behaves exactly the same as
this block when the CycleTime pin is set to 0, but uses a bit less memory and execution time. Use
this block if the data should be (potentially) sent every cycle, especially when used together with
the Encode blocks that already check for data changes and use the ChangedValues pin.

IEC60870WriteSize
This function block sends data to an IEC partner. It is very similar to IEC60870WriteCont but adds a
pin for the actual number of used extensible parameters.

The ActualSize pin defines how many of the defined extensible parameters are actually used. It
must be less or equal to the defined number of parameters (maximum 32).

Example
ASDU type 30, M_SP_TB_01
Name Data Type Attributes | Initial Value
Typeldent dint constant | clEC60870.TYPEID_IEC101 _030_M_SP_TB
(=30)
COoT dword retain
Value bool retain
Status dword retain
TimeStamp date_and_time retain

The fields are used as follows:
Typeldent identifies the ASDU type and is constant.
COT is the Cause Of Transmission. This is normally 0, in which case the the C1864 fills in the normally

used values.

Value contains the current value (binary state in this case).

Status contains the state of the measurement (valid, disturbed, overflow). In the usual case the
Cl1864 translates the status from the OPC values used inside the AC800M to the IEC representa-

tion.

TimeStamp contains the time of the latest change. When sending data TimeStamp can be left
empty; in this case the CI864 uses the current time.

Other measurement ASDU types look very similar.

ASDU type 50, C_SE_NC_01

28/82

8VAT005003T0001 cl864
Name Data Type Attributes | Initial Value
Typeldent dint constant clEC60870.TYPEID_IEC101_050_C_SE_NC
(=50)
CoT dword retain
Qualifyer word retain
Value real retain

The fields are used as follows:
Typeldent identifies the ASDU type and is constant.

COT (Cause Of Transmission) contains the reason the telegram is sent (command activation,
acknowledge, negative acknowledge, command termination).

Qualifyer contains additional information for the command (select or execute, pulse duration).
Value contains the setpoint value or the command direction (on or off, higher or lower).
Other command ASDU types look very similar.

4311 Variables
Name Data Type Attributes Initial Value
Enable_Comm bool retain true
Id Comm_Channel retain
Connect1Valid bool retain
ConnectlStatus dint retain
ConnectlError bool retain
EnableData bool retain
M_001_M_SP_NA MSG_IEC101_001_M_SP_NA Type retain
M_003_M_DP_NA MSG_IEC101_003_M_DP_NA_Type retain
M_013_M_ME_NC MSG_IEC101_013_M_ME_NC_Type retain
M_058 C_SC_TA MSG_IEC101_058_C_SC_TA_Type retain
M_058 C_SC_TA C | MSG_IEC101_058 C_SC_TA Type retain
M_058 C_SC _TA V | bool retain false
M_058 C_SC_TA E | bool retain false
M_058 C_SC_TA N | dint retain 0
BoollO1 BoollO
BoollOOn BoollO
BoollOOff BoollO
ReallO1 ReallO

4312 Function blocks
Name Function Block Type Task Connec- Description

tion

Connectl IEC60870Connect
Write001 IEC60870WriteCyc[2]
Write003 IEC60870WriteCyc[1]
Write013 IEC60870WriteCyc[1]
Read058 IEC60870Receive[l]
Write058 IEC60870WriteCyc[1]

4313 Code

2018-10-19 29/82

8VATO005003T0001 Cl864

(* Connect to IEC task / partner *)

Connectl(En_C := Enable_Comm,
ClPos := 1,
IEC60870PartnerPos := 1,
Valid => ConnectilValid,
Error => ConnectlError,
Status => ConnectlStatus,
Id := 1d);

(* Copy data from 10 variables to IEC variables *)

M_001_M_SP_NA.Value := BoollOl.Value;
M_001_M_SP_NA._Status := BoollOl.Status;

M_003_M_DP_NA_Value := O;

IF (Booll0On.Value) THEN M_003_M_DP_NA_Value := M_003_M_DP_NA_.Value + 2; END_IF;
IF (Bool100FF_Value) THEN M_003_M DP_NA_Value := M_003_M_DP_NA_.Value + 1; END_IF;
M_003_M_DP_NA_.Status := Bool100n.Status;

M_013_M_ME_NC.Value := ReallOl.Value;
M_013_M_ME_NC.Status := ReallOl.Status;

(* Write data to 1EC partner *)

Write001(Enable := EnableData,

Id := Id,
CycleTime := CycleTime,
CommonAddress := 1,

InformationObjectAddr := 1,
InfoObjAddr_StepSize := 256,
Sd[1] := M_001_M_SP_NA,
Sd[2] := M_001_M_SP_NA2);

Write003(Enable := EnableData,

Id := Id,
CycleTime := CycleTime,
CommonAddress := 1,

InformationObjectAddr := 3,
Sd[1] := M_003_M_DP_NA);

Write013(Enable := EnableData,

Id := Id,
CycleTime := CycleTime,
CommonAddress := 1

InformationObjectAadr = 13,
Sd[1] := M_013 _M_ME_NC);

(* Read a command, prepare and send a reply *)

Read058(Enable := EnableData,
Id = Id,
CommonAddress := 1,
InformationObjectAddr := 58,
Valid => M_058_C_SC_TA V,
Rd[1] := M_058_C_SC_TA);

IF ((M_058_C_SC_TA V) AND (M_058_C_SC_TA.COT=6)) THEN
M_058_C_SC_TA_C.Qualifier := M_058_C_SC_TA_Qualifier;
M_058_C_SC_TA_C.Value := M_058_C_SC_TA.Value;

IF (NOT M_058_C_SC_TA E) THEN
M_058_C_SC_TA_N := 0;

END_IF;

M_058_C_SC_TA_N := M_058_C_SC_TA N + 1;

IF (M_058_C_SC_TA_N<10) THEN
M_058_C_SC_TA_C.COT := 7;

ELSE
M_058 C_SC_TA C.COT := 10;
END_IF;
M_058_C_SC_TA_E := TRUE;
ELSE
M_058_C_SC_TA_E := FALSE;
END_IF;
Write058(Enable := M_058_C_SC_TA_E,
Id := Id,
CycleTime := CycleTime,
CommonAddress := 1

InformationObjectAédr = 58,
Sd[1] := M_058 C_SC_TA_C):

2018-10-19 30/82

8VAT005003T0001 Cl864

4.4

2018-10-19

Software configuration with the support libraries:

In SV 4 only a single support library was used, IEC60870SupLib, but in SV 5 this library has been
split into 3 seperate libraries, IEC60870ExtLib, IEC60870MasterLib and IEC60870SlavelLib. Most of
the function blocks are similar, but some of them have been changed.

IEC60870ExtLib contains general functions, IEC60870MasterLib contains functions for implement-
ing a master or controlling station, and IEC60870SlaveLib contains functions for implementing a
slave or controlled station. The two master and slave functions are separated in two libraries, but
there is no restriction in the IEC code so that both of them can be used together to implement both
master and slave functions for a single IEC partner.

Usually IEC60870EXxtLib is used together with one of the other two libraries.

31/82

8VAT005003T0001

4.5

451

2018-10-19

Cl864

Software configuration with IEC60870ExtLib:

This library contains function blocks that build on the function blocks from IEC60870CommLib to
offer generally useful functionality. All the following function blocks could be implemented in the ap-
plication by hand, but it usually makes sense to use the provided ones.

This library contains the following function blocks:

Function Block

Description

ConnectIEC60870

Connect to an IEC partner.

ConnectionlEC60870

Connect to an IEC partner.

ConnectionlEC60870_DS

Connect to an IEC partner in a Data Sharing group.

DataDelay Set 4 different Enable variable one after the other.
DataDelayMulti Set several different Enable variables one after the other.
PartnerStatus Report the partner status. Report if the connection to the IEC partner is
valid.

HoldStatus Freezes the connection status during application download.
SetPartnerActive Set an IEC task to active or standby.
Redundancy Redundancy switchover for 2 Cl boards with single connections.
RedundancyDual Redundancy switchover for 2 CI boards with double connections.
RedundancyDual3 Redundancy switchover for 2 CI boards with 2+1 connections.
RedundancyLineShare Redundancy switchover for 2 CI boards as master on a shared line.
StationStatus Reports the status of a 4 stations.
RcvClockSync Receive and process Time Synchronization telegrams.

Address conversion functions:
Conv_IEC_CA Calculate the common address from its components.
Conv_IEC_IOA Calculate the information object address from its components.

Conv_IEC_IOA_ Multi

Calculate the multiple information object addresses from their compo-
nents.

Conv_SAT to IEC_CA

Calculate the common address from its components. (SAT terminol-
ogy)

Conv_SAT to_IEC_IOA

Calculate the information object address from its components. (SAT
terminology)

Decode_DP2 Decode an IEC DP value into two bool variables.
Decode_DP3 Decode an IEC DP value into three bool variables.
BitCountIEC Counts the number of set bits, used internally.
ChangeLimiter Limit the number of status changes per task cycle.
SetDebugOut Sets the Debug output bits.

Transparent Data channel functions:
TransDatal6Rcv Transfer transparent data (receiving part).
TransDatal6Write Transfer transparent data (sending part).

ConnectIEC60870

This function block establishes the connection to the IEC partner or a pair of redundant IEC part-
ners. There must be one connect function block per IEC60870 Partner configured in the hardware

configuration.

This function block encapsules an IEC60870Connect function block and behaves very much the

same.

32/82

8VAT005003T0001 Cl864

452

4.5.3

2018-10-19

The main difference is that it tries to reconnect the IEC task if the Connect block cannot connect to
it (e.g. because the CI864 module has crashed or is currently removed) as long as the Enable pin
is set to true.

If the connection is not valid after the time given in ConnectWait, it disables the Enable pin of the
embedded IEC60870Connect block for Restart_Delay before it enables it again.

This allows the Connect block to handle hot-swapping and severe error situations that crash the
CI1864 board automatically.

ConnectionlEC60870

This function block establishes the connection to the IEC partner or a pair of redundant IEC part-
ners. There must be one connect function block per IEC60870 Partner configured in the hardware
configuration.

This function block contains most of the function blocks handling the connections to one IEC part-
ner through one CI864 board: One ConnectlIEC60870 block, one PartnerStatus block, one Set-
PartnerActive block and the logic to tie them together. If this function block is used, then the other
blocks listed above should not be used.

Most of the input/output pins are connected directly to the wrapped function blocks; see the de-
scription of those function blocks.

Enable enables the connection; this is connected to the En_C pin of the IEC60870Connect func-
tion block.

The Redundant pin determines if the IEC partner is single or redundant (both primary and second-
ary IP address used). When this function block is used, redundancy switchover between the two
connections is always handled automatically; this block cannot be used if the switchover has to be
controlled by logic.

The CIRedundancy pin determines if one CI864 board is used or if two CI864 boards are used as
a redundant pair. If this pin is TRUE, then there needs to be a second block of this type to handle
the redundant connection plus logic to handle the switchover (typically a Redundancy or Redun-
dancyDual function block). Also the connection (or both connections) is set active based on the Pri-
mary pin.

The V2_DecodeUsed pin determines if "V2" style Decode blocks are used or not. See the discus-
sion of Data Consistency in the section on Redundancy.

The ColdStartDelay pin is used to delay activating the connection after a controller start. Internally
the Enable pin will be considered FALSE until this time has elapsed. This can be used to reduce
the peak load imposed on the controller after startup by delaying the activation of the connection.

The ActivateDelay pin is used to delay the Primary signal, so the partners of both Cl modules of a
redundant connection cannot be active at the same time.

The CommandDelay pin is used to delay setting the CmdEnable pin to TRUE.

The Primary pin pin determines if this connection is the primary connection or not; only relevant if
the CIRedundancy pin is TRUE.

The Cl_Valid pin indicates if the CI864 board functions properly; this is connected to the Valid pin
of the IEC60870Connect function block.

The CmdEnable pin has the same function as the corresponding pins of the Redundancy or Re-
dundancyDual block. When this function block is used, this pin should be used and the pins of the
Redundancy block should be ignored.

The InEnable pin indicates if the Receive blocks for this connection can be enabled. If CIRedun-
dancy is FALSE or V2_DecodeUsed is TRUE, then this can be used directly, otherwise additional
logic is used; See the discussion of Data Consistency in the section on Redundancy.

The DecodeConnValid pin indicates that the connection is considered valid. This is connected to
the ConnValid pin of a Decode_xxx_v2 function block. If redundant CI864 boards are used, the
outputs of the two function blocks are or-ed together.

ConnectionlEC60870_DS

This function block establishes the connection to the IEC partner or a pair of redundant IEC part-
ners. There must be one connect function block per IEC60870 Partner configured in the hardware
configuration.

This function block is similar to the ConnectionlEC60870 block, but it is used for Data Sharing
groups. (The _DS stands for Data Sharing)

33782

8VAT005003T0001 Cl864

454

4.5.5

4.5.6

4.5.7

2018-10-19

The first/primary connection uses a ConnectionlEC60870 block, the further connections use the
ConnectionlEC60870_DS block.

Most of the input/output pins are the same as for the ConnectionlEC60870 block, see above.

The Id_DSM pin (DSM stands for Data Sharing Master) is connected to the Id variable of the
first/primary connection in the Data Sharing group.

DataDelay

This function block is used to set four different ‘enable' variables one after another. For each ‘ena-
ble' variable there is another variable that becomes true for one DatalnitTime.

If the Enable pin is false, then all output pins are false as well. DataDelay time after the Enable pin
becomes true, DataEnablel is set to true and DataEnable1New is set to true for DatalnitTime.
DataDelay time after that DataEnable2 is set to true as well, and so on.

This function block is useful if a lot of Write function blocks are used to split them into groups and to
avoid causing a very high CPU load by enabling them all at the same time. For new projects it is
suggested to use the DataDelayMulti (see below).

DataDelayMulti

This function block is used to set a number of different 'enable’ variables one after another. This
function block is similar to DataDelay, but it has a varying number of outputs and is more efficient.

If the Enable pin is false, then all output pins are false as well.

DataDelayMS milliseconds after the Enable pin becomes true, EnableOut[1] is set to true and Up-
dateOut[1] is set to true for DatalnitMS milliseconds. DataDelayMS milliseconds after that the next
group of variables is set.

On arising edge of Update[x], UpdateOut[x] is set to true for one cycle, provided that EnableOut[x]
is also TRUE. This can be used to force a "Data Refresh".

This function block is useful if a lot of Write function blocks are used to split them into groups and to
avoid causing a very high CPU load by enabling them all at the same time.

PartnerStatus

This function block returns the status of the IEC partner; that is if the CI864 board has a valid con-
nection to the IEC partner.

The Enable pin must be set to true and the Id pin must be connected to the Id variable from a valid
IEC60870Connect function block for this function block to work. The Id variable must be the same

one as the one from the Connect block with the same IEC60870PartnerPos or the Id variable of the
first Connect block in a data sharing group.

If the Redundant pin is true, then this function block returns information about both IEC partners
(primary and secondary IP Address is configured for this IEC partner), if not it only returns infor-
mation about the first partner.

Statusl and Status2 indicate if a valid connection exists to the primary / secondary IEC partner.

StatusValuel and StatusValue2 give a little more detailed information: O if there is no network con-
nection, 1 if the TCP/IP connection has been established and 2 if the connection is fully enabled. If
an End-Of-Initialisation telegram is used, the value becomes 3 after the EOI telegram has been re-
ceived.

ReadValid1l and ReadValid2 are true when the corresponding status has actually been received
from the ClI board.

HoldStatus

This function block is used to preserve the connection status during an application download, be-
cause the Connect block becomes invalid for a few task cycles until it re-establishes the connection
to the protocol handler. This short interruption can be problematic if it causes a line switchover or
connection error messages in the event log. This function block freezes the status for a given time
or until the PartnerStatus block reports that it is reporting reliable information.

The ConnValid pin should be connected to the Valid pin of the Connect block.

34/82

8VAT005003T0001 Cl864

4.5.8

459

4.5.10

4511

2018-10-19

The Statuslin, Status2In, StatusValuelln, StatusValue2ln, ReadValid1ln, and ReadValid2In
pins should be connected to the corresponding pins of the PartnerStatus block.

The HoldTime pin determines how long the status is frozen.

The output pins Status10ut, Status20ut, StatusValuelOut, and StatusValue20ut are then used
just like the corresponding pins from the PartnerStatus block.

SetPartnerActive

In simple cases the (possibly) two connections an IEC Partner can have will perform redundancy
switchover, but in more complicated redundancy situations, this function block is used to force each
connection to be either active or standby.

The Enable pin must be set to true (usually the output of the Valid pin is used) and the Id pin must
be connected to the Id variable from a valid IEC60870Connect function block for this function block
to work. The Id variable must be the same one as the one from the Connect block with the same
IEC60870PartnerPos or the Id variable of the first Connect block in a data sharing group.

If the Redundant pin is true, then this function block sets both IEC partners (primary and secondary
IP Address is configured for this IEC partner), if not it only sets the first partner.

If the Automatic pin is true, then the IEC partner connections determine active / standby automati-
cally as if this function block was not used.

The PartnerlActive and Partner2Active pins are used to set the two connections of that partner
to active (true) or standby (false).

Redundancy

This function block implements logic to perform redundancy switchover between two connections,
usually two connections on two different Cl boards. This function block implements one possible
algorithm for determining which connection is active, others are certainly possible.

The basic logic is as follows: The first connection that becomes valid will be the active one. A
switchover to the standby connection occurs if the currently active connection becomes invalid and
the standby connection is valid.

The pins ConnA10k and ConnB 10Ok indicate if the two connections are working properly. Typically
they are directly connected to the StatusX pins of a PartnerStatus block.

A rising flank on the LineChange pin forces a switchover.

The pin SwitchoverDelay gives the time before switchover occurs. This is useful to avoid switch-
over if a short connection break occurs (e.g. during application download).

After switchover the currently active connection is set passive. After an extra delay of Acti-
vateDelay, the other connection is set active. CommandDelay is an extra delay on top of that be-
fore the ConnXCmdOut pins become active.

The pins ConnAPrimary and ConnBPrimary indicate which connection is active. During switch-
over both pins can be false for a short while (ActivateDelay) to avoid situations that both connec-
tions are treated as active at the same time.

The pins ConnACmdOut and ConnBCmdOut can be used for enabling commands only after a
short delay after switchover has occurred.

RedundancyDual

This function block is similar to Redundancy, except that it is used for two pairs of redundant con-
nections.

The switchover logic is similar, except that switchover happens if the passive pair of connections
has more valid connections than the active pair. E.g. if one connection of the active pair fails while
both passive connections are working, then switchover will occur.

The pins ConnA10k and ConnA20k indicate if the two connections of the first pair are working,
ConnB1Ok and ConnB20Ok indicate the status of the second pair.

RedundancyDual3

This function block is similar to RedundancyDual, except that it is used for two pairs of three con-
nections (usually one partner with two connections and one with a single connection).

35782

8VAT005003T0001 Cl864

4512

4.5.13

2018-10-19

The switchover logic is similar, except that switchover happens if the passive pair of connections
has more valid connections than the active pair. E.g. if one connection of the active pair fails while
both passive connections are working, then switchover will occur.

The pins ConnA10k, ConnA20k and ConnA30k indicate if the two connections of the first triple
are working, ConnB10k, ConnB20k and ConnB30k indicate the status of the second triple

StationStatus

This function block reports the status of 4 stations. This block is normally used only in the master
station in a party-line configuration (when using the -101 or -103 Master). In such a configuration
the PartnerStatus block will return a valid status as long as at least one station is responding, while
this block reports the status of each station.

The Enable pin must be set to true and the Id pin must be connected to the Id variable from a valid
IEC60870Connect function block for this function block to work. The Id variable must be the same

one as the one from the Connect block with the same IEC60870PartnerPos or the Id variable of the
first Connect block in a data sharing group.

If the Redundant pin is true, then this function block returns information about the second Partner, if
not it returns information about the first partner.

The FirstStation pin gives an offset to the station number. If this pin is 0, then the function block
reports the status of stations 1 to 4, if it is 4, then the block reports the status of stations 5 to 8 and
S0 on.

Status01, Status02, Status03 and Status04 indicate if a valid connection exists to the stations.

StatusValue01, StatusValue02, StatusValue03 and StatusValue4 give a little more detailed infor-
mation: O if there is no network connection, 1 if the TCP/IP connection has been established and 2
if the connection is fully enabled. If an End-Of-Initialization telegram is used, the value becomes 3
after the EOI telegram has been received.

If less than 4 stations are connected, simply ignore the extraneous outputs.

RcvClockSync

Receive and process Time Synchronization telegrams. Use this function block in a substation that
should have its time synchronized using the IEC Time Set telegrams. Normally other time synchro-
nization methods (such as SNTP) are preferable as the accuracy of this method is relatively low.
Under optimal conditions the accuracy is about 50 milliseconds, but in the worst case the time can
be off by several seconds as there is no possibility to detect (or compensate for) transmission de-
lays or retransmissions on the TCP/IP connection.

The Enable pin must be set to true and the Id pin must be connected to the Id variable from a valid
IEC60870Connect function block for this function block to work. The Id variable must be the same

one as the one from the Connect block with the same IEC60870PartnerPos or the Id variable of the
first Connect block in a data sharing group.

The CommonAddress pin gives the common address to which the Time Set telegram is sent, in this
case usually the common address of the substation.

If EnableTimeSet is true, then this function block will actually change the controller time. If this is
false, then received Time Set telegrams are still processed and the time difference reported, but the
controller time is not modified.

EnableTimeSetDelay gives the number of task cycles after enabling the function block during
which Time Set telegrams are not processed. This is used to ignore "old" Time Set telegrams that
were received before the function block was enabled and buffered by the protocol handler or the CI
board.

Transmission Delay gives the estimated average time the Time Set telegrams spend in "transit".
This time is compensated for when calculating the time difference between the sender and the re-
ceiver.

SetTimeDiffMS gives the minimum adjustment to the controller time in milliseconds. This is used to
prevent the controller time to be set too often. Since the random delays in transmitting and pro-
cessing the telegram cannot be detected or compensated for, using a value that is too low will
cause the controller time to be adjusted back and forth very often.

SincelastTele gives the time since the last Time Set telegram was received.
TimeReceived is set to true for one task cycle when a new Time Set telegram is received.

36/82

8VAT005003T0001 Cl864

4.5.14

4.5.15

4.5.16

4.5.17

2018-10-19

LastTimeDiff gives the time difference between the time from the latest Time Set telegram and the
controller time.

TimeChanged is set to true for one task cycle when the controller time is actually adjusted.
LastTimeChange gives the amount of time that the controller clock was adjusted.

Address conversion functions

All these functions have input pins for the two (Common Address) or three (Information Object Ad-
dress) address bytes and an output pin that outputs the calculated address. While these functions
add execution time to the IEC program, they make the used addresses much more readable if the
IEC partner is configured using a structured address.

The two functions Conv_IEC_CA and Conv_SAT_to_IEC_CA perform exactly the same function,
only their input pins are named differently. They convert the two bytes of a structured Common Ad-
dress into the single value of an unstructured Common Address. The function block Conv_IEC_CA
has input pins called CA1 and CA2 while the function block Conv_SAT to_IEC_CA has QRGN
and QKOMP. The output pin is called IEC_Addr.

The function block Conv_IEC_IOA has the input pins IOA1, IOA2 and IOA3 and the output pin
IEC_Addr.

The function block Conv_SAT_to_IEC_IOA is similar to Conv_IEC_IOA, but the input pins are
called QBG, QNEW and QSUB. It uses a bool external variable called IEC60870_SAT_Addressing.
If this variable is true, the parameters are used as I0A1, IOA2 and I0OA3 in the given order, if it is
false, QBG and QNEW are swapped.

The function block Conv_IEC_IOA_Multi works the same as the one for a single address, except
that it calculates several addresses at once.

Decode DP2

Decode an IEC DP value into two bool variables.
The outputs are set as follows:

Value OnValue | OffValue
0 (Indeterminate state) FALSE FALSE
1 (Off state) FALSE | TRUE
2 (On state) TRUE FALSE
3 (Indeterminate state; error) | TRUE TRUE

Decode_DP3

Decode an IEC DP value into three bool variables.
The outputs are set as follows:

Value OnValue | OffValue | ErrorValue
0 (Indeterminate state) FALSE FALSE FALSE
1 (Off state) FALSE TRUE FALSE
2 (On state) TRUE FALSE | FALSE
3 (Indeterminate state; error) | FALSE FALSE | TRUE

BitCountlEC

Counts the number of set bits; used internally.

37/82

8VAT005003T0001 Cl864

4.5.18

4.5.19

2018-10-19

ChangeLimiter

Limits the number of status changes per task cycle. This function block can be used spread to extra
load of enabling / disabling Receive, Decode or Write function blocks and the associated functional-
ity (e.g. logging of the change of signal quality) by delaying the status change so only a limited
number of status changes is acted upon each task cycle. This is especially useful when one con-
troller handles many IEC connections. When the total number of signals is very high (especially re-
ceived signals) this can also be used to split the signals into groups which are enabled one after
the other. For sent signals the DataDelay function block is usually used for a similar purpose.

Connect the In pin to the signal to be delayed (e.g. the output of the PartnerStatus block).

The Valid pin of the IEC60870Connect function block becomes FALSE for a short while after a
changed application is downloaded; the same happens to function block that wrap or depend on
this block. The AppStartFreeze pin defines a "grace period" during which status changes of these
pins a processed directly, but only if the In pin was TRUE before the application download.

The MaxChanges pin gives the maximum number of changes per period (usually a task cycle).

The ChangeCounter pin must be connected to a (global) variable. All the ChangeLimiter function
blocks that share the same variable work together as a group. This variable needs to be set to 0 by
outside logic; setting it to O starts a new period.

SetDebugOut

This function block sets the debug control bits. Debugging must be enabled for this to have any ef-
fect (see HW Parameters "Debug IP Address" and "Debug Port") and a tool to log the messages
must be running (e.g. UDPDebug). Debugging can add significantly to the CPU load of the CI864
and slow data transfer, so it should only be enabled when needed. Set the debug bits to 0 to mini-
mize the overhead of debugging. There are separate debugging bits for the CI864 as a whole, each
IEC Partner (Logical Partner) and each Connection (Partner). Each set bit enabled debugging for a
certain function.

Usage of this function requires detailed knowledge about the internal structure of the CI864 and/or
the used communication protocol (e.g. IEC 60870-5-104). Therefore it is usually only used by (or at
the behest of) a developer from ABB Austria.

The Enable pin must be set to true (usually the output of the Valid pin is used) and the Id pin must
be connected to the Id variable from a valid IEC60870Connect function block for this function block
to work. The Id variable must be the same one as the one from the Connect block with the same
IEC60870PartnerPos or the Id variable of the first Connect block in a data sharing group.
IEC60870PartnerPos and Partner identify which debug bits are set: If both are 0, the debug bits of
the CI864 as a whole are set; if IEC60870PartnerPos is greater 0 and Partner is 0 then the bits of
the IEC Partner (Logical Partner) are set; if IEC60870PartnerPos is greater 0 and if Partner is 1 or
2 the the bits of that Connection (Primary and Secondary respectively) are set.

DebugBits gives the value to which to set the debug bits.
Currently debug bits are only used for the Connection.

Cl1864: (IEC60870PartnerPos=0 Partner=0)
Bitmask Option Name Description

Logical Partner: (IEC60870PartnerPos>0 Partner=0)
Bitmask Option Name Description

38/82

8VAT005003T0001

2018-10-19

Cl1864: (IEC60870PartnerPos>0 Partner=1 or 2)

The bits as given here apply to the IEC60870-5-104 Protocol. The exact usage of these bits de-
pends on the used protocol.

Cl864

Bitmask Option Name Description

0x000000FF | DB_PARTNER_MASK Bits allocated to the Partner layer.

0x00000001 | DB_PARTNER_READ Telegrams read from partner (without flow-level
data).

0x00000002 | DB_PARTNER_WRITE Telegrams written to partner (without flow-level
data).

0x00000004 | DB_PARTNER_STATUS Currently not used.

0x00000008 | DB_PARTNER_CMD Details about command handling (the CI864 uses
extra code and data structures to associate com-
mand activation messages with the response
messages).

0x00000080 | DB_PARTNER_POLL Detailed information about polling telegrams gen-
erated at the partner level. Currently used only by
135 protocaol.

0x0000FF00 | DB_MSG_MASK Bits allocated to the Message layer.

0x00000100 | DB_MSG_READ Messages received from the partner.

0x00000200 | DB_MSG_WRITE Currently not used.

0x00000400 | DB_MSG_STATUS Currently not used.

0x00000800 | DB_MSG_ANALYZE Detailed information about message processing.

0x00001000 | DB_MSG_DEC_HDR Detailed information about message header de-
coding. Currently used only by the Allen-Bradley
protocol.

0x00002000 | DB_MSG_DEC_INFOBJ Detailed information about message item decod-
ing. Currently used only by the Allen-Bradley pro-
tocol.

0x00008000 | DB_MSG_POLL Detailed information about data item polling mes-
sages. Currently used only by the 135 protocol.

0x00F00000 | DB_FLOW_MASK Bits allocated to the Flow layer.

0x00100000 | DB_FLOW_READ Complete telegrams (without the telegram frame
data) read from the partner.

0x00200000 | DB_FLOW_WRITE Complete telegrams (without the telegram frame
data) written to the partner.

0x00400000 | DB_FLOW_STATUS Currently not used.

0x00800000 | DB_FLOW_POLL Detailed information about the telegam flow con-
trol (e.g. polling telegrams, ...)

0x0F000000 | DB_FRAME_MASK Bits allocated to the Frame layer.

0x01000000 | DB_FRAME_READ Complete telegrams (including telegram frame
data) read from the partner. This is after frame-
level integrity checks on the received data were
performed, so partial or corrupted data is not
shown.

0x02000000 | DB_FRAME_WRITE Complete telegrams (including telegram frame
data) written to the partner.

0x04000000 | DB_FRAME_STATUS Currently not used.

0x08000000 | DB_FRAME_EN_DE_CODE | Detailed information about the telegram frame en-
coding / decoding. Currently used only by Allen-
Bradley X328 framing.

0xFO000000 | DB_TRANS_MASK Bits allocated to the Transport layer.
This layer is generally the same for all protocols.

0x10000000 | DB_TRANS_READ Raw data read. At this layer a telegram from the
partner is usually read as several chunks of bytes.

0x20000000 | DB_TRANS WRITE Raw data written.

39/82

8VAT005003T0001 Cl864

4.5.20

4.5.20.1

4.5.20.2

2018-10-19

0x40000000 | DB_TRANS_STATUS Status changes of Transport layer (TCP/IP con-
nect / disconnect, ...)

Transparent Data channel functions:

A Transparent Data channel is a virtual serial data connection between two IEC Partners. The two
IEC Partners are usually on two different CI864 boards connected to the same controller, but it is
also possible to use CI864 boards connected to different controllers and to send the transparent
data from one controller to the other with MMS or other means.

Each Transparent Data channel needs 4 of the following function blocks, one Rcv block and one
Write block to send data from the first IEC Partner to the second and a second such pair to send
data in the opposite direction. The output of the Rcv block is connected to the corresponding Write
block.

In a fully redundant configuration there are 4 channels with a total of 8 Rcv and 8 Write blocks.

At the moment Transparent Data is used only for SAT style disturbance transmission, but if needed
it can be adapted to other uses, such as IEC 60870 style file transfer.

TransDatal6Rcv

This function block reads the data of a Transparent Data channel of width 16 from an IEC Partner
and writes it to a structured variable of type TransDatal6Chan.

The Ena pin must be set to true and the Id pin must be connected to the Id variable from a valid
IEC60870Connect function block for this function block to work. The Id variable must be the same
one as the one from the Connect block with the same IEC60870PartnerPos or the Id variable of the
first Connect block in a data sharing group.

Channel gives the number of the data channel to be used. Normally 0 is used for the first channel
and 1 for the second channel (in a redundant configuration). This channel number must match the
one given in the HW setting DisTransChan1/2.

ExecCycle determines how often (every how many task cycles) this function block is actually exe-
cuted. The TransDatal6Rcv and the corresponding Write block are usually placed in different 1131
programs. In some configurations these programs are executed in different tasks with significantly
different execution cycles. It does not make much sense to execute the two blocks at significantly
different intervals, since the slower task determines the maximum speed of the channel. Executing
one of the two blocks more often than needed does not cause any problems as such, but it can in-
crease the CPU load unnessesarily.

ExecOffs gives an offset within the cycle, when exactly the block is executed. This can be used to
spread the CPU load over different task cycles. This parameter must be less than ExecCycle.

The structured variable of type TransDatal6Chan that receives the data read from the IEC Partner
is connected to the TCData pin.

TransDatal6Write

This function block takes the data from a structured variable of type TransDatal6Chan and writes it
to a Transparent Data channel of width 16 of an IEC Partner.

The connections are the same as for the Rcv block above, except that the TCData pin is (logically)
an input rather than an output pin.

40/82

8VAT005003T0001

4.6

2018-10-19

Cl864

Software configuration with IEC60870SlaveLib:

This library contains function blocks that build on the function blocks from IEC60870CommLib and
IEC60870ExtLib to implement data handling functions for a slave station; that is a station that
sends monitoring messages and receives commands and setpoints. All the following function
blocks could be implemented in the application by hand, but it usually makes sense to use the pro-
vided ones.

This library contains the following function blocks:

Function Block

Description

MakeBoollO

Convert simple values to a BoollO structure.

MakeReallO

Convert simple values to a ReallO structure.

Functions to convert /O types to IEC types:

Encode_030_SP_TB

Convert BoollO to single point (IEC ASDU type 30).

Encode_031_DP_TB

Convert two BoollO to double point (IEC ASDU type 31).

Encode_036_ME_TF

Convert ReallO to measured value (IEC ASDU type 36).

Simplified functions to convert I/O types to IEC types:

Encode_015 _IT_NA_ Basic

Convert dint to integrated total (IEC ASDU type 15).

Encode_030_SP_TB_Basic

Convert BoollO to single point (IEC ASDU type 30).

Encode_031_DP_TB_Basic

Convert two BoollO to double point (IEC ASDU type 31).

Encode_036_ME_TF_Basic

Convert ReallO to measured value (IEC ASDU type 36).

Encode_037_IT_TB_Basic

Convert dint to integrated totals (IEC ASDU type 37).

Simplified functions to convert simple types to IEC types:

Encode_009_ME_NA_NBIO

Convert real to measured value (IEC ASDU type 9).

Encode_011_ME_NB_NBIO

Convert real to measured value (IEC ASDU type 11).

Encode_030_SP_TB_NBIO

Convert bool to single point (IEC ASDU type 30).

Encode_031_DP_TB_NBIO

Convert two bool to double point (IEC ASDU type 31).

Encode_032_ST_TB_NBIO

Convert dint to step position (IEC ASDU type 32).

Encode_033_BO_TB_NBIO

Convert dword to binary output (IEC ASDU type 33).

Encode_034_ME_TD_NBIO

Convert real to measured value (IEC ASDU type 34).

Encode_036_ME_TF_NBIO

Convert real to measured value (IEC ASDU type 36).

Combined Output functions for Monitoring data types
(inputs are 1/0O types):

EncWrite_001_030_SP_NA _
TB

Encode and send single point values (IEC ASDU type 1 or 30).

EncWrite_001_030_SP_NA _
TB_32

Encode and send single point values (IEC ASDU type 1 or 30).

EncWrite_003_031_DP_NA_
TB

Encode and send double point values (IEC ASDU type 3 or 31).

EncWrite_003_031_DP_NA_
TB_SI

Encode and send double point values (IEC ASDU type 3 or 31).

EncWrite_005_032_ST_NA__
TB

Encode and send step positions (IEC ASDU type 5 or 32).

EncWrite_009_034_ME_NA
_TD

Encode and send measured values (IEC ASDU type 9, 11, 34 or

EncWrite_013_036_ME_NC
_TF

Encode and send measured values (IEC ASDU type 13 or 36).

EncWrite_015_037_IT_NA_
TB

Encode and integrated total values (IEC ASDU type 15 or 37).

EncWrite_015_037_IT_NA_
TB_RI

Encode and integrated total values (IEC ASDU type 15 or 37).

Simplified Combined Output functions for Monitoring data types
(inputs are simple types):

41782

8VAT005003T0001 Cl864

4.6.1

2018-10-19

EncWrite_xxx_xxx_xx_Nx_T | Same name as the corresponding function for 10 types, name ends
x_NIO with “_NIO”

Functions for command handling; these functions receive a com-
mand, decode it and sent the proper responses:

Rcv_045_SC_NA Receive a single command (IEC ASDU type 45).
Rcv_046_DC_NA Receive a double command (IEC ASDU type 46).
Rcv_048 DC_NA Receive a set point command (IEC ASDU type 48).
Rcv_050_SE_NC Receive a set point command (IEC ASDU type 50).
Rcv_051 BO_NA Receive a bitstring (IEC ASDU type 51).
Rcv_058 SC_TA Receive a single command (IEC ASDU type 58).
Rcv_059 DC_TA Receive a double command (IEC ASDU type 59).
Rcv_063 _SE_TC Receive a set point command (IEC ASDU type 63).
Rcv_064 BO_TA Receive a bitstring (IEC ASDU type 64).
Functions for handling select and execute commands:
Rcv_045_SC_NA_SE Receive a single command (IEC ASDU type 45).
Rcv_046_DC_NA_SE Receive a double command (IEC ASDU type 46).
Cmd_Or "Or" function block for commands.
Cmd_Or_SE "Or" function block for setpoints. Stores the latest value of the set-
point.

Combined functions to receive commands (on one or two connec-

tions):
CmdRcv_045 058 SC_NA_ | Receive a single command (IEC ASDU type 45 or 58).
TA
CmdRcv_046_059 DC_NA_ | Receive a double command (IEC ASDU type 46 or 59).
TA
CmdRcv_047_060_RC_NA_ | Receive a set point command (IEC ASDU type 47 or 60).
TA
CmdRcv_048 061_SE_NA_ | Receive a set point command (IEC ASDU type 48 or 61).
TA
CmdRcv_050_063_SE_NC_ | Receive a set point command (IEC ASDU type 50 or 63).
TC
CmdRcv_051_064_BO_NA_ | Receive a bitstring (IEC ASDU type 51 or 64).
TA
Functions for handling counter values:
Rcv_101_CI_NA Receive a counter interrogation (IEC ASDU type 101), decode it and
send a response.
Decode_Cnt_Request Performs further decoding of a counter request.
Decode_Cnt_Request_Ex Performs further decoding of a counter request (extended).

Functions to make structured variables

The output conversion functions in the next group need structured variables of type BoollO or Re-
allo (so they can be directly connected to 1/O variables) as input. For variables that have a simple
type (bool or real) because they are created by logic, these two function blocks simplify filling in the
structured variables. The two function blocks work the same, except for the different types. Connect
the process value to the Value pin. The Status pin can be used to indicate the variable status, if it
is left unconnected, the default is the "OK" status code (16#C0). If the Error pin is set to true, the
the status code is ignored and a "Bad" status code (16#0C) is used instead, the default is false, so
if this function is not needed, the pin can be left unconnected. A possible use for the Error pin is for
signals that are created on a different controller and sent via MMS to set them to "Bad" if the MMS
communication is interrupted.

All that data is written to the structured output variable that is connected to the Out pin.

42/82

8VAT005003T0001 Cl864

4.6.2

46.21

4.6.2.2

2018-10-19

Output conversion functions for Monitoring data types

These function blocks take individual variables (the fields of a BoollO variable or a variable calcu-
lated in a program) and copy them into a structured variable suitable for the selected ASDU type.
They check for changes and set an output variable to indicate if the data has changed and should
be sent to the IEC partner.

The functions blocks have a similar function but different input pins, depending on the specific data
type. The output is always a structured variable appropriate to the ASDU type. The function blocks
are extensible and can accept from 1 to 32 data items.

Compared to the function blocks from the IEC60870SupLib, the Enable pin has been removed (it
does not provide any advantage of using the optional EN pin) and the function blocks now use
BoollO or ReallO structured types instead of separate pins for the value and status.

While the UpdateOutput pin is true, the data is always copied to the output variables ignoring Hys-
teresis processing. The ChangedValues pin is O if the output variables are not changed. Is is
16#FFFFFFFF if they have changed, the UpdateOutput pin is true or on the first cycle after the En-
able pin becomes true.

For each data item there is one input pin (or more) for the value (the type depends on the data
block), one or more pins for the status and an output pin that outputs a structured variable. These
function blocks assume that the status conversion is handled by the CI864 board and accept an
OPC status value.

The pins InTime and INCOT are optional parameters. The default is that the timestamp is gener-
ated by the PH and the COT (Cause of Transmission) is set to Spontaneous Transmission, which is
the wanted behavior in most cases. InTime sets the timestamp that is sent with the telegram. Gen-
erally it should be changed together with the value or status and is used when the 1131 application
generates the timestamp. INnCOT is used only in special cases, such as when a data point that is
received from one IEC 104 connection is sent to another one and the cause of transmission has to
be preserved.

These function blocks assume that the Status Conversion is set to "OPC_STD".

The simplified versions of theses function blocks (..._Basic) ommit the InTime and InCOT pins and
the associate functionality, which is not needed in many cases. This saves controller resources and
makes engineering easier. They behave the same as the above group if these two pins are not con-
nected.

The third group with (...BNIO) is similar to the _Basic blocks, except it uses simple types (bool, real)
instead of structured types. BNIO stands for Bool, No 10. Each block has a common Status pin that
applies to all data items.

This library only contains function blocks for the most commonly used data types. If additional data
types are required, one of the existing function blocks can be copied and modified (the library is not
locked).

Encode_030_SP_TB

Conversion of single point values. It has the following extensible parameters per data item.

Name Data Type Attributes Direction Initial
Value
InVal BoollO in_out (IN)
InTime date_and_time retain in
INCOT dword retain in
OutVal MSG_IEC101_030_M_SP_TB_Type in_out
(ouT)

Encode_031 _DP_TB

Converts two or three bool input values to a dual point value. It has the following extensible param-
eters per data item.

Name Data Type Attributes Direction Initial Value
InValOn BoollO in_out (IN)
InValOff BoollO in_out (IN)
ErrValue bool retain in false
InTime date_and_time retain in
43/82

8VAT005003T0001

4.6.2.3

46.24

4.6.2.5

2018-10-19

Cl864

InCOT

dword

retain

in

OutVal

MSG_IEC101_031_M_DP_TB_Type

in_out (OUT)

Encode_036_ME_TF

Conversion of a real value with hysteresis handling. It has the following extensible parameters per

data item.
Name Data Type Attributes Direction Initial Value
InVal ReallO in_out (IN)
InTime date_and_time retain in
INCOT dword retain in
Hys real retain in 0.0
OutVal MSG_IEC101_036_M_ME_TF_Type in_out (OUT)
HysDiff real hidden out 0.0

The Hys input pin determines the hysteresis handling:

If Hys is O, there is no hysteresis processing; the Value is copied to the output whenever it is
changed.

If Hys is > 0, it is an absolute hysteresis; the Value is copied to the output when the absolute value
of the difference to the previous output is greater than Hys.

If Hys is < 0, it is an "integrated value change" hysteresis. Each cycle the difference between the
Value and the output is added up. When the absolute value of this integrated difference (which is
stored in HysDiff) is greater than the absolute value of Hys, the Value is copied to the output and
HysDiff is set to 0.

The HysDiff pin is normally not used outside the function block.

Encode_037_IT_TB_Basic

Conversion of integrated total (counter) values. This function block is substantially different from the
others and is described separately. It needs special handling, detailed in an example below.

While the UpdateOutput pin is true, the data is always copied to the output variables ignoring Hys-
teresis processing. The ChangedValues pin is O if the output variables are not changed. Is is
16#FFFFFFFF if they have changed, the UpdateOutput pin is true or on the first cycle after the En-
able pin becomes true.

If the Trigger pin is true, then the UpdateOutput becomes edge-sensitive, that is data is only copied
on the rising edge. In addition, if Trigger is true, the item data is not checked for changes, it is only
updated on the rising edge of UpdateOutput.

Set the Trigger pin to true to use this function block to freeze integrated totals to process them in
the manner suggested in the IEC specification.

Set the Trigger pin to false to process counters similar to measurements, that is to send them
when they change.

The COT pin gives the Cause of Transmission for all counters and the Status pin the status (actu-
ally the sequence counter and overflow bits).

If the SetTimeStamp pin is true, then the current time will be set to all counters. This ensures that
all counters are sent with the time, when the UpdateOutput pin is / becomes true.

It has the following extensible parameters per data item.

Name Data Type Attributes Direction Initial Value
InVal BoollO in_out (IN)
OutVal MSG_IEC101_037_M_IT_TB_Type in_out (OUT)

Encode_009_ME_NA_BNIO

Conversion of a real value to a normalized integer with hysteresis handling. It has the following ex-
tensible parameters per data item.

Name Data Type Attributes Direction Initial Value
InVal Real retain in 0.0
Status dword retain in 16#CO0

44/82

8VAT005003T0001 Cl864

4.6.3

2018-10-19

Hys real retain in 0.0
OutVal MSG_IEC101_036_M_ME_TF_Type in_out

(ouT)
HysDiff dint hidden out 0

The value (InVal) must be between -1.0 and +1.0. 1.0 is mapped to 32767 internally. Hysteresis
processing is done after the value is converted.

The Hys input pin determines the hysteresis handling:

If Hys is O, there is no hysteresis processing; the Value is copied to the output whenever it is
changed.

If Hys is > 0, it is an absolute hysteresis; the Value is copied to the output when the absolute value
of the difference to the previous output is greater than Hys.

If Hys is < 0, it is an "integrated value change" hysteresis. Each cycle the difference between the
Value and the output is added up. When the absolute value of this integrated difference (which is
stored in HysDiff) is greater than the absolute value of Hys, the Value is copied to the output and
HysDiff is set to 0.

The HysDiff pin is normally not used outside the function block.

Combined Output functions for Monitoring data types

These functions combine the functionality of a Conv_IEC_IOA function block, an Encode_xxx func-
tion block and two IEC60870WriteCont function blocks. These blocks are defined to output data on
a fully redundant connection (two CI864 boards), but can also be used for a single connection (in
which case they incur a small penalty over using the separate function blocks, mainly in the amount
of used memory.)

Generally, it is recommended to use these function blocks, as they are simpler to configure and re-
quire significantly less engineering time.

The function blocks with the "_NIO" suffix are designed to be connected to simple data types and
have an Input pin for a separate status for each data item while the blocks without the suffix are de-
signed for structured 1/O types (BoollO, ReallO or DintlO).

The functions blocks have a similar function but different input pins, depending on the specific data
type. The function blocks are extensible and while they can be extended to 32 data items, only up
to 16 data items will work, except for the blocks with the "_32" suffix. Since some of these blocks
have several input pins per data item, they may not fit on a page in CBM when used with a large
number of data items.

The following pins are the same for all the function blocks:

Name Data Type Attributes Direction Initial Value
Enablel bool retain in
Id1 Comm_Channel in_out
Enable2 bool retain in
1d2 Comm_Channel in_out
CommonAddress dint retain in
I0A1 dint retain hidden in 0
I0A2 dint retain hidden in 0
I0A3 dint retain hidden in 0
InfoObjAddr_Step- | dint retain in 1
Size
UseTimeStamp bool retain in true
UpdateOutput bool retain in false
Validl bool retain out
Statusl dint retain out 1
Valid2 bool retain out
Status2 dint retain out 1
Extensible:
InStatus dword in

45782

8VAT005003T0001 Cl864

4.6.3.1

4.6.3.2

2018-10-19

TmpVal Depending on type out

HysDiff real hidden out 0.0

“The Id1 pin must be connected to the Id variable from a valid IEC60870Connect function block for
this function block to work. The Id variable must be the same one as the one from the Connect
block with the same IEC60870PartnerPos or the Id variable of the first Connect block in a data
sharing group. The Enablel pin must be set to true to enable data transfer on the primary comnec-
tion.

The pins Enable2 and 1d2 are used for the secondary connection. If the secondary connection is
not used, Enable2 should be set to FALSE and 1d2 should be connected to a dummy variable. 1d2
should not be connected to the same Id variable as 1d1, as this will incur additional processing
overhead.

The CommonAddress pin gives the common address for all data elements.

The 10AL, 10A2 and I0A3 give the information object address for the first data element (if an un-
structured I0A is used, the the whole IOA can be connected to IOA1 while IOA2 and IOA3 are set
to 0). The information object address is increased by InfoObjAddr_StepSize for each following data
element. The Common Address and the Step Size are given with single input pins, since these are
typically set to the same number on many such function blocks and so should be calculated once at
the beginning of the IEC program and stored in variables.

The UseTimeStamp pin indicates if the IEC data type with a Time Stamp (30 to 37) is used or if the
IEC data type without a Time Stamp (1, 3, 5, ...) is used. The name of the function block indicates
which ASDU types are used: e.g. EncWrite_003_031_DP_NA_TB_NIO uses either type 3 (if
UseTimeStamp is FALSE or type 31 if it is TRUE). The value of this pin should not be changed
online, if it is changed, the corresponding Connect block(s) should be disabled and then enabled
again.

While the UpdateOutput pin is true, the data is always copied to the IEC variables ignoring Hystere-
sis processing.

The Validl and Valid2 pins indicate if the data elements contain valid data (or at least some of
them).

The Statusl and Status2 pins contain information about possible errors.

The InStatus pin can be used to indicate the variable status, if it is left unconnected, the default is
the "OK" status code (16#CO0). This pin is only present on function blocks for simple types (*_NIO").

The structured I/O variables have a Status member that indicates the item status. The structured
I/O variables use the Direction "in_out", but functionally they are actually direction "in".

The TmpVar output pin is actually an internal variable and should normally not be connected. It can
be connected for debugging purposes, to see if the encoding part of the function block works

properly.

This library only contains function blocks for the most commonly used data types. If additional data
types are required, one of the existing function blocks can be copied and modified (the library is not
locked).

EncWrite_001_030_SP_NA_TB and EncWrite_001_030_SP_NA_TB_32

Output of single point values. It has the following additional extensible parameters per data item.

Name Data Type Attributes Direction Initial Value
InVal BoollO in_out (IN)

EncWrite_001_030_SP_NA_TB_NIO

Output of single point values. It has the following additional extensible parameters per data item.

Name Data Type Attributes Direction Initial Value
InVal bool in
InStatus dword in

46/82

8VAT005003T0001 Cl864

4.6.33 EncWrite_003_031 DP_NA_TB

Output of a double point data item composed of two or three bool input values. It has the following
additional extensible parameters per data item.

Name Data Type Attributes Direction Initial Value
InValOn BoollO in_out (IN)
InValOff BoollO in_out (IN)
ErrValue bool in

4.6.34 EncWrite_003_031 DP_NA_TB_SI

Output of a double point data item composed of two or three bool input values. It has the following
additional extensible parameters per data item.

Name Data Type Attributes Direction Initial Value
InValOn BoollO in_out (IN)
InValOff BoollO in_out (IN)
ErrValue BoollO in_out (IN)

4.6.35 EncWrite_003_031 DP_NA_TB_NIO

Output of a double point data item composed of two or three bool input values. It has the following
additional extensible parameters per data item.

Name Data Type Attributes Direction Initial Value
InValOn bool in
InValOff bool in
InValError bool retain in false
InStatus dword in

4.6.36 EncWrite_005_032_ST NA_TB

Output of a trafo step position. It has the following additional extensible parameters per data item.
Name Data Type Attributes Direction Initial Value
InVal ReallO in_out (IN)

4.6.37 EncWrite_005_032_ST_NA_TB_NIO

Output of a trafo step position. It has the following additional extensible parameters per data item.

Name Data Type Attributes Direction Initial Value
InVal real in
InTrans bool in false
InStatus dword in

The value (given on InVal) is given as a real and converted to an integer (-64 to 63), InTrans gives
if the equipment is in transient state (if this information is used).

4.6.3.8 EncWrite_007_033 BO_NA_TB_NIO

Output of a bitstring of 32 bit. It has the following additional extensible parameters per data item.
Name Data Type Attributes Direction Initial Value
InVal dword in

4.6.39 EncWrite_009_034_ME_NA_TD_NIO

Output of a real (floating point) value as an integer value with hysteresis handling. It has the follow-
ing additional extensible parameters per data item.

Name Data Type Attributes Direction Initial Value
Scale real retain in 32767.0
UseASDU_11 35 | bool retain in false

2018-10-19 47/82

8VAT005003T0001

Cl864

InVal ReallO in_out

Offset real in 0.0
Mult real in 1.0
HysA real in 0.0
Hysl real in 0.0
HysDiff dint retain out 0

The value (given on InVal) is converted to an integer value between -32768 and 32767, using the
following formula: value := (InVal - Offset) / Mult * Scale. EncWrite_009_034_ME_NA_TD_NIO

Output of a real (floating point) value as an integer value with hysteresis handling. It has the follow-

ing additional extensible parameters per data item.

Name Data Type Attributes Direction Initial Value
UseASDU_11 35 | bool retain in false
InVal real in
InStatus dword in
Val_X0 real in 0.0
Val_X1 real in 1.0
HysA real in 0.0
Hysl real in 0.0
HysDiff dint retain out 0

The UseASDU_11_35 input pin determines which data type is used. If it is TRUE, types 11 or 35
are used, if FALSE, types 9 or 34 are used.

The value (given on InVal) is converted to an integer value between -32768 and 32767, using the
following formula: value := (InVal - Val_XO0) / Val_X1 * 32767.

The HysA and Hysl input pin determines the hysteresis handling, see the function block
EncWrite_013_036_ME_NC_TF_NIO below. The hysteresis values are converted simiarly to the
actual value, except that only Val_X1 is used.

The HysDiff output pin is actually an internal variable and should normally not be connected. This
pin is used to store the current value of the integrated hysteresis

4.6.3.10 EncWrite_013_036_ME_NC_TF
Conversion of a real value with hysteresis handling. It has the following additional extensible pa-
rameters per data item.
Name Data Type Attributes Direction Initial Value
InVal ReallO in_out (IN)
HysA real in 0.0
Hysl real in 0.0
HysDiff real retain out 0.0
4.6.3.11 EncWrite_013_036_ME_NC_TF_Sc
Conversion of a real value with hysteresis handling. It has the following additional extensible pa-
rameters per data item.
Name Data Type Attributes Direction Initial Value
InVal ReallO in_out (IN)
Offset real in 0.0
Mult real in 1.0
HysA real in 0.0
Hysl real in 0.0
HysDiff real retain out 0.0
2018-10-19 48/82

8VAT005003T0001 Cl864

The parameters Offset and Mult allow the value to be rescaled according to the following formula:
value := (InVal - Offset) / Mult.

4.6.3.12 EncWrite_013 _036_ME_NC_TF_NIO
Conversion of a real value with hysteresis handling. It has the following additional extensible pa-
rameters per data item.
Name Data Type Attributes Direction Initial Value
InVal real in
InStatus dword in
HysA real in 0.0
Hysl real in 0.0
HysDiff real retain out 0.0
The HysA and Hysl input pin determines the hysteresis handling:
HysA gives an absolute hysteresis. If HysA is 0 or less than 0, there is no hysteresis processing;
the Value is copied to the output whenever it is changed.
If HysA is > 0, it is an absolute hysteresis; the Value is copied to the output when the absolute
value of the difference to the previous output is greater than HysA.
Hysl gives an "integrated value change" hysteresis. If Hysl is 0, then the integrated hysteresis is
not used. Each cycle the difference between the Value and the output is added up. When the abso-
lute value of this integrated difference (which is stored in HysDiff) is greater than the absolute value
of Hysl, the Value is copied to the output and HysDiff is set to 0.
The HysDiff output pin is actually an internal variable and should normally not be connected. This
pin is used to store the current value of the integrated hysteresis
4.6.3.13 EncWrite_015_037_IT_NA_TB_RI
Conversion of integrated total (counter) values. It has the following additional extensible paramters
per data item.
Name Data Type Attributes Direction Initial Value
InVal ReallO in_out (IN)
InStatus dword in 0
InCF real in 1.0
The parameter InCF allows the value to be rescaled according to the following formula:
value := InVal * InCF.
4.6.3.14 EncWrite_015_037_IT_NA_TB_NIO

2018-10-19

Conversion of integrated total (counter) values. It has the following additional extensible paramters

per data item.

Name Data Type Attributes Direction Initial Value
InVal dint in
InStatus dword in 0

This function block is substantially different from the others and is described separately. It needs
special handling, detailed in an example below.

While the UpdateOutput pin is true, the data is always copied to the output variables

If the Trigger pin is true, then the UpdateOutput becomes edge-sensitive, that is data is only copied
on the rising edge. In addition, if Trigger is true, the item data is not checked for changes, it is only
updated on the rising edge of UpdateOutput.

Set the Trigger pin to true to use this function block to freeze integrated totals to process them in
the manner suggested in the IEC specification.

Set the Trigger pin to false to process counters similar to measurements, that is to send them
when they change.

The COT pin gives the Cause of Transmission for all counters.

49/82

8VAT005003T0001 Cl864

The InStatus pin the status of this block is not used for the I/O status but for the sequence counter
and overflow bits:

Sequence Number (0-31) OR (bitwise OR)
16#20 if an overflow occurred OR

16#40 if the counter was adjusted OR
16#80 if the counter is invalid.

The TimeStamp gives the Time Stamp to be used for the counters, leave at the default value to
transmit the current time at the time the counters are sent.

To force all the counters to be sent at a specific time (even if the counter value has not changed),
either toggle the EnableX pins or give a changed time on the TimeStamp pin (only when using the
type with Time Stamp).

4.6.4 Input handling for Command types

These function blocks handle receiving a command, formulating a response message and sending
it back to the partner. They are very similar, except that the output pins depend on the type of the
command.

These function blocks use several external variables that must be defined at the application level:

Name Data | Attrib- Description
Type utes
IEC60870_Cmd_BlockedIsError bool If true an error code will be reported to the

IEC partner if the command is blocked
(The pin Blocked is true), otherwise the
command will be acknowledged to the IEC
partner normally but is silently ignored.

IEC60870_Cmd_NAck_Blocked bool If true the execution of the command will
be reported with a negative acknowledge if
the command is blocked.

If IEC60870_Cmd_BlockedIsError is true,
then this parameter is ignored.

IEC60870_Cmd_AutoAckTime time Time for which the command is active if
CmdAutoAck is true. Also used when the
command is blocked.

2 seconds (time#2s) is typically used here.

IEC60870_Cmd_Command_Term | dint Number of acknowledgement messages to
send for commands. Must be the same as
the hardware parameter Command termi-
nation and must use the same value as the
master does for this parameter.

IEC60870_Cmd_SetPoint_Term dint Number of acknowledgement messages to
send for setpoints. Must be the same as
the hardware parameter SetPoint termina-
tion and must use the same value as the
master does for this parameter.

The following pins are the same for all the function blocks:

Name Data Type Attributes Direction Initial Value
Enable bool retain in
Id Comm_Channel in
CommonAddress dint retain in
InformationOb- dint retain in
jectAddress
Confirm bool retain in true
Blocked bool retain in true
CmdAutoAck bool retain in false
CmdOk bool retain in false
CmdError bool retain in false

2018-10-19 50/82

8VAT005003T0001

46.4.1

4.6.4.2

4.6.4.3

4.6.4.4

2018-10-19

Cl864

Valid bool retain out false

The function block only operates if the Enable pin is true. The pins Id, CommonAddress and Infor-
mationObjectAddress are connected directly to the Read and Write function blocks inside.

If Blocked is true, then the command is blocked and will not set the output pins. How this is re-
ported to the IEC partner is determined by the IEC60870_Cmd_BlockedIsError and
IEC60870_Cmd_NAck_Blocked variables.

If CmdAutoAck is true, then the command is automatically reported as 'successfully executed' to
the IEC partner. Otherwise CmdOk or CmdError have to be used to report the successful (or not
successful) execution of the command.

If Confirm is true, confirmation messages are sent, otherwise they are suppressed. This should
only be set to false for the passive connection in some redundancy schemes.

The Valid pin is true while the command is running.

The most common case is to set Blocked to false (or to connect it to the switch that controls if this
station is remotely controlled) and to set CmdAutoAck to true.

Rcv_045_SC_NAand Rcv_058_SC_TA

Handling of a single command.

Name Data Type Attributes Direction Initial Value
CmdOn bool retain out false
CmdoOff bool retain out false

If the 'Single Command State' is 1 (on) then CmdOn is true, otherwise CmdOff is true. In any case,
they are only true while the command is running. Usually only CmdOn is used for a single com-
mand.

Rcv_046_DC_NA and Rcv_059 DC_TA

Handling of a double command.

Name Data Type Attributes Direction Initial Value
CmdOn bool retain Out false
CmdoOff bool retain Out false

If the 'Double Command State' is 1 (on) then CmdOn is true, if it is 2, CmdOff is true. In any case,
they are only true while the command is running.

Rcv_048_SE_NC

Handling of a setpoint.
Name
SPValue real

Attributes Direction Initial Value
retain Out 0.0

Data Type

The value of the setpoint command is output on SPValue. In most cases it makes sense to store
this value in another variable. The SPValue is rescaled so it is between -1.0 and 1.0. The Valid
indicates when a new value has been received.

Rcv_050_SE_NC and Rcv_063_SE_TC

Handling of a setpoint.
Name

Attributes Direction Initial Value
retain Out 0.0

Data Type

SPValue real

The value of the setpoint command is output on SPValue. In most cases it makes sense to store
this value in another variable. The Valid indicates when a new value has been received.

51/82

8VAT005003T0001 Cl864

4.6.45 Rcv_051_BO_NAandRcv_064_BO_TA

Handling of a bitstring.

Name Data Type Attributes Direction Initial Value
BOValue dword retain Out 0

The value of the bitsting command is output on BOValue. In most cases it makes sense to store
this value in another variable. The Valid indicates when a new value has been received.

4.6.5 Input handling for Select/Execute Command types
These function blocks handle receiving a command, formulating a response message and sending
it back to the partner for Select/Execute commands.

The function blocks are named with an additional "_SE" in the function block name and they be-
have the same as the regular ones for direct execute commands, except with the following addi-

tions:
These function blocks use the following additional external variables that must be defined at the ap-
plication level:
Name Data Attrib- Description
Type utes
IEC60870_Cmd_SelectTime | time Maximum time a command stays selected be-
fore it is aborted.

The function blocks have the following extra pins:

Name Data Type Attributes Direction Initial Value
Selected bool retain out false

The Selected pin becomes true when a select message has been received for this command.

In a redundant configuration this should be used to block all other Select/Execute commands since
the firmware of the Cl board can only block other S/E commands that are received on the same
connection.

4.6.6 Combined functions to receive commands

These functions combine the functionality of a Conv_IEC_IOA function block, two Rcv_xxx function
block and one Cmd_Or (or Cmd_Or_SE) function blocks. These blocks are defined to receive com-
mands on a fully redundant connection (two CI864 boards), but can also be used for a single con-
nection (in which case they incur a small penalty over using the seperate function blocks, mainly in
the amount of used memory.)

Generally, it is recommended to use these function blocks, as they are simpler to configure and re-
quire significantly less engineering.
These function blocks use the same external variables as the normal command handling blocks.

The functions blocks have a similar function but different input pins, depending on the specific data
type. The following pins are the same for all the function blocks:

Name Data Type Attributes Direction Initial Value
Enablel bool retain in
Id1 Comm_Channel in_out
Enable2 bool retain in
1d2 Comm_Channel in_out
CommonAddress dint retain in
I0A1 dint retain hidden in 0
I0A2 dint retain hidden in 0
I0A3 dint retain hidden in 0
UseTimeStamp bool retain in true
Blocked1 bool retain in true

2018-10-19 52/82

8VAT005003T0001 Cl864

Confirml bool retain in true
Blocked2 bool retain in true
Confirm2 bool retain in true
CmdAutoAck bool retain in false
CmdOk bool retain in false
CmdError bool retain in false
Valid bool retain out false
UseSelectExecute | bool retain in false
Selected bool retain out false
PulseValid3 bool retain in false
Valid3 bool retain in false
SPValue3 real retain in 0.0
SPValue real retain out 0.0

“The Id1 pin must be connected to the Id variable from a valid IEC60870Connect function block for
this function block to work. The Id variable must be the same one as the one from the Connect
block with the same IEC60870PartnerPos or the Id variable of the first Connect block in a data
sharing group. The Enablel pin must be set to true to enable data transfer on the primary comnec-
tion.

The pins Enable2 and 1d2 are used for the secondary connection. If the secondary connection is
not used, Enable2 should be set to FALSE and 1d2 should be connected to a dummy variable. 1d2
should not be connected to the same Id variable as 1d1, as this will incur additional processing
overhead.

The CommonAddress pin gives the common address for all data elements.

The 10AL, I0A2 and I0A3 give the information object address for the first data element (if an un-
structured I0A is used, the the whole IOA can be connected to IOA1 while IOA2 and IOA3 are set
to 0). The Common Address is given with a single input pin, since it is typically set to the same
number on many such function blocks and so should be calculated once at the beginning of the
IEC program and stored in variables.

The UseTimeStamp pin indicates if the IEC data type with a Time Stamp (58 to 64) is used or if the
IEC data type without a Time Stamp (45 to 51) is used. The name of the function block indicates
which ASDU types are used: e.g. CmdRcv_045_058 SC_NA_TA uses either type 58 (if
UseTimeStamp is FALSE or type 45 if it is TRUE).

If Blocked1 (or Blocked?2 for the secondary connection) is true, then the command is blocked and
will not set the output pins. How this is reported to the IEC partner is determined by the
IEC60870_Cmd_BlockedlIsError and IEC60870_Cmd_NAck_Blocked variables.

If CmdAutoAck is true, then the command is automatically reported as 'successfully executed' to
the IEC partner. Otherwise CmdOk or CmdError have to be used to report the successful (or not
successful) execution of the command.

If Confirm1 (or Confirm2 for the secondary connection) is true, confirmation messages are sent,

otherwise they are suppressed. This should only be set to false for the passive connection in some
redundancy schemes.

The Valid pin is true while the command is running.

The most common case is to set Blocked to false (or to connect it to the switch that controls if this
station is remotely controlled) and to set CmdAutoAck to true.

If UseSelectExecute is true, then the blocks use the logic for Select/Execute Commands, other-
wise they use normal commands with Execute only. The output pin Selected becomes true when
the select message has been received for this command. This functionality is only supported for
Single and Double commands (Types 45, 46, 58 and 59).

SetPoint types (48/49, 50, 51, 61/62, 63 and 64) use the pins PulseValid3, Valid3 and SPValue3
to set the SP value from logic and output the value on SPValue. See the function block
Cmd_Or_SE below for details. For bitstring commands the value pins are called BOValue instead
of SPValue.

2018-10-19 53782

8VAT005003T0001

46.6.1

4.6.6.2

4.6.6.3

46.6.4

4.6.6.5

4.6.6.6

2018-10-19

cl864
CmdRcv_045_058_SC_NA_TA
Handling of a single command.
Name Data Type Attributes Direction Initial Value
CmdOn bool retain out false
CmdOff bool retain out false

If the 'Single Command State' is 1 (on) then CmdOn is true, otherwise CmdOff is true. In any case,
they are only true while the command is running. Usually only CmdOn is used for a single com-

mand.

CmdRcv_046_059_DC_NA_TA

Handling of a double command.

Name Data Type Attributes Direction Initial Value
CmdOn bool retain out false
CmdoOff bool retain out false

If the 'Double Command State' is 1 (on) then CmdOn is true, if it is 2, CmdOff is true. In any case,
they are only true while the command is running.

CmdRcv_047_060_RC_NA_TA

Handling of a double command.

Name Data Type Attributes Direction Initial Value
CmdOn bool retain out false
CmdoOff bool retain out false

If the 'Regulating Command State' is 1 (higher) then CmdOn is true, if it is 2 (lower), CmdOff is true.

In any case, they are only true while the command is running.

CmdRcv_048_061_SE_NA_TA

Handling of a setpoint.

Name Data Type Attributes Direction Initial Value
UseASDU_49 62 bool retain in false
Val_X0 real retain in 0.0
Val_X1 real retain in 1.0
SPValue real retain out 0.0

The UseASDU_49 62 input pin determines which data type is used. If TRUE, types 49 or 62 are

used, if FALSE, types 48 or 61 are used.

The value of the setpoint command is output on SPValue. The received setpoint value is between -
1.0 and 1.0 before it is rescaled. SPValue := Val_XO0 + spvalue * Val_X1.

The Valid indicates when a new value has been received.

CmdRcv_050_063_SE_NC_TC

Handling of a setpoint.

Name

Data Type

Attributes

Direction

Initial Value

SPValue

real

retain

Out

0.0

The value of the setpoint command is output on SPValue. The Valid indicates when a new value

has been received.

CmdRcv_051_064_BO_NA_TA

Handling of a bitstring.

54782

8VAT005003T0001

4.6.6.7

4.6.6.8

4.6.7

46.7.1

2018-10-19

Cl864

Name

Data Type

Attributes

Direction

Initial Value

BOValue

dword

retain

Out

0

The value of the bitsting command is output on BOValue. The Valid indicates when a new value
has been received.

Cmd_Or

This function block combines the received commands from two different Rcv function blocks. It is
used in a redundant configuration with two Cl boards as each board needs a seperate Rcv block.
This block does not do a whole lot more than a normal "or", but since it is a function block and not a
function, it can be created from a bulk data sheet.

If Blocked is true, the outputs are always false.
CmdOn is true if either CmdOn1 or CmdOn2 is true (or both).
CmdOff is true if either CmdOff1 or CmdOff2 is true (or both).

Cmd_Or_SE

This function block combines the received setpoints from two different Rcv function blocks. It is
used in a redundant configuration with two Cl boards as each board needs a seperate Rcv block.
If Blocked is true, the setpoint value is not copied to the output.

If Valid1 is true, the value of SPValuel is copied to the output SPValue and Valid is set to true.
If Valid2 is true, the value of SPValue2 is copied to the output SPValue and Valid is set to true.

If Valid3 is true, the value of SPValue3 is copied to the output SPValue. Valid is only set to true if
PulseValid3 is also true, otherwise the value is simply copied. Valid3 has priority over the others.
The third input is to be able to set the setpoint value from logic, for example to track the local set-
point value while the device is in local control.

Functions for handling counter values:

Rev_101 CI_NA

This function block handles receiving of a counter request, formulating a response message and
sending it back to the partner.

Pins of this function block:

Name Data Type Attributes Direction Initial Value
Enable bool retain in
Id Comm_Channel in
CommonAddress dint retain in
InformationObjectAddress dint retain in 0
TermTime time retain in time#3s
Done bool retain in false
Valid bool retain out false
Cnt_Request dint retain out 0
Cnt_Read bool retain out false
Cnt_Freeze bool retain out false
Cnt_Reset bool retain out false

The function block only operates if the Enable pin is true. The pins Id, CommonAddress and Infor-
mationObjectAddress are connected directly to the Read and Write function blocks inside. The In-
formationObjectAddress is normally O according to the IEC spec.

The termination message is sent after TermTime has elapsed, unless Done is set to true before
that. The time should be long enough to send all the counter values to the partner before it elapses,
Done can be used to send the termination message faster when no data has to be sent (such as
when freezing counters).

55/82

8VAT005003T0001 Cl864

4.6.7.2

4.6.7.3

2018-10-19

Cnt_Request contains the Qualifyer of the counter command (RQT, see the IEC spec).
Cnt_Read, Cnt_Freeze and Cnt_Reset are set according to the FRZ part of the Qualifyer.

The Counter Interrogation is treated like a command. Because it has a fixed IOA address, only one
Cl request can be handled at the same time.

Decode_Cnt_Request

This function block assists in decoding of the Cnt_Request parameter of the Rcv_101_CI_NA
block.

The Cnt_Request pin should be connected to the Cnt_Request output pin of the Rcv_101_CI_NA
block.

One of Cnt_Groupl, Cnt_Group2, Cnt_Group3, Cnt_Group4 and Cnt_Gen is set to true, de-
pending on which counter group was requested in the Qualifyer.

Cnt_COT received the Cause of Transmission to be used when sending the counter values, this
pin is usually connected to the COT pin of the Encode_037_IT_xxx blocks used processing this ClI
request.

Decode_Cnt_Request_Ex

This function block does more extensive decoding than Decode_Cnt_Request. It implements prac-
tically all the logic needed to implement Counter Interrogation handling according to the IEC spec.

The pins Cnt_Request, Cnt_Read, Cnt_Freeze and Cnt_Reset should be connected to the corre-
sponding output pins of the Rcv_101_CI_NA block.

Conn_Valid should normally be connected to the Valid output of the Connect block. The counters
become "unfrozen" when this pin becomes false.

Send_Time_MS gives the pulse duration (in milliseconds) for the Counter_GroupX_Send pins in
a read request. This should be long enough for at least two task cycles of the IEC program.

Freeze_Reset_Time_MS gives the pulse duration (in milliseconds) for the Coun-
ter_GroupX_Freeze and Counter_GroupX_Reset pins during a Freeze or Reset request.

Local_Freeze determines if counter freezing/resetting is done by local logic (if true) or by counter
requests (if false). If this pin is true, Freeze and Reset requests are ignored by this function block
and counters are always considered to be "frozen".

Cnt_GroupX_Send (where X is the counter group; 1 to 4) are pulsed during a Counter Read re-
guest. Usually these pins are connected directly to the Enable pin of the IEC60870Write blocks for
this counter group.

Cnt_GroupX_Freeze (where X is the counter group; 1 to 4) are pulsed during a Counter Freeze
request. Usually these pins are connected directly to the Update_Output pin of the En-
code_037_IT_TB blocks for this counter group.

Cnt_GroupX_Reset (where X is the counter group; 1 to 4) are pulsed during a Counter Reset re-
quest.

One of the above pins is pulsed when the Cl command applies to one specific counter group, all
four of a type are pulsed in a general counter request.

Cnt_COT received the Cause of Transmission to be used when sending the counter values, this
pin is usually connected to the COT pin of the Encode_037_IT_xxx blocks used processing this ClI
request.

Done is pulsed for one task cycle at the completion of a Freeze or Reset operation. This pin is usu-
ally connected to the Done pin of the Rcv_101_CI_NA block.

This function block implements counter processing according to Mode B (local freeze with counter
interrogation) if Local_Freeze is true or Mode C (freeze and transmit by counter interrogation com-
mands) if Local_Freeze is false. It can also be used to implement the freezing part of Mode D
(freeze by counter interrogation command, frozen values reported spontaneously).

Mode A (local freeze with spontaneous transmission) and the transmission part of Mode D have to
be implemented by other logic.

56/82

8VAT005003T0001

4.7

2018-10-19

Cl864

Software configuration with IEC60870MasterLib:

This library contains function blocks that build on the function blocks from IEC60870CommLib to
data handling functions for a master station; that is a station that receives monitoring messages
and sends commands and setpoints. All the following function blocks could be implemented in the
application by hand, but it usually makes sense to use the provided ones.

This library contains the following function blocks:

Function Block

Description

Decode_030_SP_TB

Convert a structured variable (IEC ASDU type 30) to simple data
types.

Decode_031_DP_TB

Convert a structured variable (IEC ASDU type 31) to simple data
types.

Decode_032_ST_TB

Convert a structured variable (IEC ASDU type 32) to simple data
types.

Decode_034_ME_TD

Convert a structured variable (IEC ASDU type 34) to simple data
types.

Decode_036_ME_TF

Convert a structured variable (IEC ASDU type 36) to simple data
types.

Decode_037_IT_TB

Convert a structured variable (IEC ASDU type 37) to simple data
types.

Version 2 Decode blocks:

Decode_030_SP_TB_V2

Convert a structured variable (IEC ASDU type 30) to simple data
types.

Decode_031_DP_TB V2

Convert a structured variable (IEC ASDU type 31) to simple data
types.

Decode_032_ST _TB V2

Convert a structured variable (IEC ASDU type 32) to simple data
types.

Decode_036_ME_TF_V2

Convert a structured variable (IEC ASDU type 36) to simple data
types.

Send a command, receive and report the response.

Send_045_SC_NA

Send a command (IEC ASDU type 45).

Send_046_DC_NA

Send a command (IEC ASDU type 46).

Send_050_SE_NC

Send a setpoint (IEC ASDU type 50).

Send_051_BO_NA

Send a bhitstring (IEC ASDU type 51).

Send_058_SC_TA

Send a command (IEC ASDU type 58).

Send_050_DC_TA

Send a command (IEC ASDU type 59).

Send_063_SE_TC

Send a setpoint (IEC ASDU type 63).

Send_064_SE_TC

Send a bitstring (IEC ASDU type 64).

Send_xxx_xx_xx_Dual

Send a command/setpoint on two redundant CI864 boards.

Send_xxx_xx_xx_SE

Send a command/setpoint using Select/Execute rather than direct
execute.

Combined command sending blocks:

Send_050_063_SE_NC_TC

Cmd- Send a single command (IEC ASDU type 45 or 58).
Send_045_058_SC_NA_TA

Cmd- Send a double command (IEC ASDU type 46 or 59).
Send_046_059 DC_NA TA

Cmd- Send a regulating command (IEC ASDU type 47 or 60).
Send_047_060_RC_NA TA

Cmd- Send a setpoint (IEC ASDU type 48, 49, 61 or 62).
Send_048 061_SE_NA_TA

Cmd- Send a setpoint (IEC ASDU type 50 or 63).

57/82

8VAT005003T0001 Cl864

4.7.1

2018-10-19

Cmd- Send a bitstring command (IEC ASDU type 51 or 64).
Send_051_064_BO_NC_TC

DetectGATerm Report the end of a General Acquisition from a slave.

Functions for handling counter values:

Make_CntReq_Freeze_Re | Generate a Counter Interrogation sequence, freezing and then
ad reading a group of counters.

Send_101_CI_NA Send a Counter Interrogation request.

Input conversion functions for Monitoring data types
These function blocks take the structured variable of the selected ASDU type and comvert it into
individual variables (the fields of a BoollO variable or a variable calculated in a program).

The functions blocks have a similar function but different input pins, depending on the specific data
type. The optput is always a structured variable appropriate to the ASDU type. They are extensible
and can accept from 1 to 32 data items.

These function blocks access several external variables that must be defined:

Name Data Attrib- Description
Type utes
IEC60870_Rcv_ConnBadDelay | time Time after which the data points are set to

invalid if no valid connection to the IEC
partner exists.

Used to avoid setting all inputs invalid when
there is a short interruption in the communi-
cation, such as during an application down-
load or redundancy switchover.

Compared to the function blocks from the IEC60870SupLib, the Enable pin has been removed (it
does not provide any advantage of using the optional EN pin) and the function blocks now use
BoollO or ReallO structured types instead of seperate pins for the value and status.

If simple variables are used in a project (bool rather than BoollO), then a simple "mov" function can
be used to copy the Value field from the structured IEC variables to the application variables. The
Decode_DP_x function blocks can be used for Double Indication variables.

The ConnValid pin should normally be connected to the relevant output of the PartnerStatus block
and the RcvValid pin to theValid pin of the Receive function block. If either of these pins is false,
this indicates that no valid data is availiable. After the defined timeout, the status of all variables will
be set to indicate an I/O error. The timeout is to be able to avoid setting the variables invalid during
a redundancy switchover.

The UpdateOut pin can be used to indicate if the input variables have changed or not. The default
is that the function block assumes that the variables have changed and processes them every cy-
cle. If it is known that the input variables have not changed, then this pin can be used to to save
CPU time. The timeout handling for I/O error is still done, even if this pin indicates that the input has
not changed. This pin is usually connected to the NewData pin of the Receive block.

The BadSignals pin is true if any of the signals has a status code indicating an error.
The InVal pin is connected to the structured variable written by the Receive function block.

The pins OutTime has the timestamp of the latest value change, either the time that was received
from the IEC partner, was filled in by the Cl board (e.g. when the time stamp was marked as inva-
lid) or generated by the function block, when the data is set as invalid. Bits in the status code indi-
cate the status of the timestamp, as described above.

The OutCOT pin contains the Cause of Transmission. OutCOT is useful only in special cases,
such as when a data point that is received from one IEC 104 connection is sent to another one and
the cause of transmission has to be preserved.

These function blocks assume that the Status Conversion is set to "OPC_STD".

58782

8VAT005003T0001

4.7.11

4.7.1.2

4.7.1.3

4.7.1.4

2018-10-19

Cl864

This library only contains function blocks for the most commonly used data types. If additional data
types are required, one of the existing function blocks can be copied and modified (the library is not

locked).

The Version 2 ("_V2") Decode blocks have the same pins as the regular ones, with the following

additions:

The input pins RcvValid2 and UpdateOut2 have the same function as RcvValid and UpdateOut.
These pins are used when two Receive blocks are used (redundant CI864 Modules). The pins are
or-ed internally so the pins can be directly connected to the Receive blocks.

The CmpVal pin is normally not used outside the function block.

For the differences in behavior and use between the regular and Version 2 Decode blocks, see the
section on Data Consistency.

Decode_030_SP_TB

Conversion of single point values. It has the following extensible parameters per data item.

Name Data Type Attributes Direction Initial
Value
InVal MSG_IEC101_030_M_SP_TB_Type in_out (IN)
OutVal BoollO retain in_out (OUT)
OutTime date_and_time retain out
OutCOT dword retain out

Decode_031_DP_TB

Converts two or three bool input values to a dual point value. It has the following extensible param-
eters per data item.

Name Data Type Attributes Direction Initial Value
InVal MSG_IEC101_031_M_DP_TB_ Type in_out (IN)
OutValOn BoollO in_out (OUT)
OutValOff BoollO in_out (OUT)
OutTime date_and_time retain out
OutCOT dword retain out
Decode_034 ME_TD
Conversion of a real value. It has the following extensible parameters per data item.
Name Data Type Attributes Direction Initial
Value
InVal MSG_IEC101_034_M_ME_TD_Type in_out (IN)
OutVal RealllO retain in_out (OUT)
OutTime date_and_time retain out
OutCOT dword retain out

The measurement value which is sent as an integer with a value between -32768 and 32767 is re-
scaled to a value between -1.0 and 1.0.

Decode_036_ME_TF

Conversion of a real value. It has the following extensible parameters per data item.

Name Data Type Attributes Direction Initial
Value
InVal MSG_IEC101_036_M_ME_TF_Type in_out (IN)
OutVal RealllO retain in_out
(ouT)
OutTime date_and_time retain out
OutCOT dword retain out
59/82

8VAT005003T0001 Cl864

4715 Decode 037_IT TB

Conversion of a counter value. It has the following extensible parameters per data item.

Name Data Type Attributes Direction Initial Value
InVal MSG_IEC101_037_M_IT_TB_Type in_out (IN)
OutVal DintlO retain in_out (OUT)
OutTime date_and_time retain out
OutCOT dword retain out

4.7.2 Output handling for Command types

These function blocks handle sending a command and receiving and decoding the response mes-
sage from the partner. They are very similar, except that the output pins are slightly different.

These function blocks access several external variables that must be defined:

Name Data Attrib- Description
Type utes
IEC60870_Cmd_AckWaitTime time Time to wait for the response from the
partner.
IEC60870_Cmd_Command_Term | dint Number of response messages to the

command. This parameter has to be the
same as the corresponding one in the
HW parameters.

IEC60870_Cmd_SetPoint_Term dint Number of response messages to the
setpoint command. This parameter has to
be the same as the corresponding one in
the HW parameters.

The following pins are the same for all the function blocks:

Name Data Type Attributes Direction Initial Value

Enable bool retain in

Id Comm_Channel in

CommonAddress dint retain in

InformationOb- dint retain in

jectAddress

Ok bool retain out false

Error bool retain out false
Running bool retain out false

Status bool retain out false

The function block only operates if the Enable pin is true. The pins Id, CommonAddress and Infor-
mationObjectAddress are connected directly to the Read and Write function blocks inside.

The OK pin is set to true if the command completed successfully.
The Error pin is set to true for one cycle if an error occurred.

The Running pin is true while the command is in progress. It is not possible to send the same com-
mand again until the previous one is finished.

The Status pin indicates success or failure of the command. It is O while the command is running. It
is set to 1 if the command completes successfully. A negative value indicates an error, —1 indicates
that no answer was received from the partner, —2 that the partner sent a negative acknowledge,
other negative values indicate that the function blocks that actually send or receive data reported
an error.

Each function block will have different input pins for the actual command and command data. It re-
acts to the rising flank on the pin(s) that are used to send the command.

Most of those function blocks exist in two versions that use different data types, without and with a
timestamp, but are otherwise the same, e.g. Send_045_SC_NA uses ASDU type 45 without ("_NXx";
No Time) timestamp, Send_058_SC_TA with ("_Tx"; Time).

2018-10-19 60/82

8VAT005003T0001

4721

4.7.2.2

4.7.2.3

4.7.2.4

4.7.3

2018-10-19

Send_045_SC_NA, Send_058_SC_TA

Handling of a single command.

Cl864

Name Data Type Attributes Direction Initial Value
CmdOn bool retain in false
CmdoOff bool retain in false

A command is sent when one of these inputs becomes true, unless the previous command is still
running. If CmdOn is true the "Single Command State" field in the message is set to 1 (on), if

CmdOff is true the "Single Command State" field in the message is set to 0 (off).

Send_046_DC_NA, Send_059_DC_TA

Handling of a double command.

Name Data Type Attributes Direction Initial Value
CmdOn bool retain in false
CmdoOff bool retain in false

A command is sent when one of these inputs becomes true, unless the previous command is still
running. If CmdOn is true the "Double Command State" field in the message is set to 1 (on), if

CmdOff is true the "Double Command State" field in the message is set to 2 (off).

Send_050_SE_NC, Send_063_SE_TC

Handling of a setpoint.

Name Data Type Attributes Direction Initial Value
Send bool retain in false
SPValue real retain in 0.0

The setpoint is sent when the Send pin becomes true, unless the previous setpoint command is
still running. Make sure the value is set to the SPValue pin before or in the same task cycle the

Send pin is set to true.

Send_051_BO_NA, Send_064_BO_TA

Handling of a setpoint.

Name Data Type Attributes Direction Initial Value
Send bool retain in false
BOValue dword retain in 0

The setpoint is sent when the Send pin becomes true, unless the previous setpoint command is
still running. Make sure the value is set to the BOValue pin before or in the same task cycle the

Send pin is set to true.

Redundant Output handling for Command types

This set of function blocks handles command output for a pair of redundant Cl modules. The func-
tion blocks are similar to the same function blocks for single command output. In fact each of those
function blocks encapsules two normal command blocks.

The redundant function blocks are named with an additional "_Dual" in the function block name.

These function blocks access several external variables that must be defined, in addition to those
for the single command function blocks:

Name Data Attrib- Description
Type utes
IEC60870_Cmd_ResendTime | time Time within which to hold command for re-
dundancy switchover.

The following pins are the same for all the function blocks:

61/82

8VAT005003T0001 Cl864

4.7.4

4741

2018-10-19

Name Data Type Attributes Direction Initial Value

Enable bool retain in

Id1 Comm_Channel in

1d2 Comm_Channel in

CommonAddress dint retain in

InformationOb- dint retain in

jectAddress

Activel bool retain in

Active2 bool retain in

Ok bool retain out false
Error bool retain out false
Status bool retain out false

The redundant command output function blocks are for redundant command output via a pair of re-
dundant Cl boards. ID1 and ID2 are connected to the ID pins of the two Connect function blocks.
Activel and Active?2 indicate which of the two connections is currently active.

The command is output on the active connection. If the command is not executed (acknowledged
by the IEC partner) and a switchover occurs before the ResendTime elapses, then the command is
output on the other connection.

Otherwise this set of function blocks is the same as the single command blocks.

Output handling for Select/Execute Command types
These function blocks handle sending a command and receiving and decoding the response mes-
sage from the partner for Select/Execute commands.

These function blocks are named with an additional "_SE" in the function block name and they be-
have the same as the regular ones for direct execute commands, except with the following addi-
tions:

The function blocks have the following extra pins:

Name Data Type Attributes Direction Initial Value
Execute bool retain in false
Selected bool retain out false

When the pins that normally execute the command are set to true (the CmdOn pin) these function
blocks send a Select command, rather than an Execute command. The actual Execute command is
sent by setting the Execute pin to true.

The Selected pin becomes true when the confirmation message to the Select command has been
received. If the command cannot be selected (e.g. because another S/E command is already in
progress) the Error pin will become true instead.

DetectGATerm

This function block detects the end (termination message) of a General Acquisition. This usually
signifies that all the data from this slave station has been sent. This block is usually used to enable
the Receive blocks only after the GA is finished to insure that the Receive blocks do not report out-
of-date data.

The function block only operates if the Enable pin is true. The pins Id and CommonAddress are
connected directly to the Read function blocks inside.

Partner gives the HW position of the IEC Partner.
Timeout is the time to wait for the completion of the GA.

Start is set to true to indicate that the GA is supposed to be running. Normally this is connected to
the output of the PartnerStatus block.

The OK pin is set to true once the termination message of the GA has been received.

The Error pin is set to true if the termination message is not received during the specified timeout
time. The Error is only cleared by setting the Start pin to false. If the termination of the GA is re-
ceived after the timeout time has elapsed, then both the Ok and Error pins will be true.

62/82

8VAT005003T0001 Cl864

4.7.5

4.75.1

4.75.2

2018-10-19

Functions for handling counter values:

Make_CntReq_Freeze_Read

This function implements a sequence to freeze and read counter values from a slave station using
Mode C (freeze and transmit by counter interrogation commands) by sending first a Freeze Re-
guest and then a Read Request for the specified counter group.

Arising flank at the Start pin starts the sequence. The value on the CntGroup pin specifies which
counter group to request, use 1 to 4 request that group, any other value will perform a general
counter request. The value of the CntGroup pin is read once at the beginning of the sequence.

PauseTime gives the time to wait between the Freeze Request and the Read Request.
AckWaitTime gives the maximum time to wait for the termination message to the current request.
ReadTime gives the pulse duration of the pulse on the Read_Enable pin.

Send_OK and Send_Error are used to provide feedback from the Send_101_CI_NA block; they
should be connected to the Ok and Error pins of that function block, respetively.

Send_Send_Req and Send_Cnt_Reqest are used to control the Send_101_CI_NA block; they
should be connected to the Send_Req and Cnt_Request pins of that function block, respetively.

Read_Enable is pulsed when the counter values should be read; this pin is usually connected to
the Enable pin of the relevant IEC60870Receive blocks.

The OK pin is set to true if the counter request completed successfully.
The Error pin is set to true for one cycle if an error occured.
The Running pin is true while the counter request sequence is running.

Send_101_CI_NA

This function block handles sending a counter request and receiving and decoding the response
message from the partner.

Pins of this function block:

Name Data Type Attributes Direction Initial Value
Enable bool retain in

Id Comm_Channel in

CommonAddress dint retain in
CommonAddressResponse dint retain in
InformationObjectAddress dint retain in 0
Send_Req bool retain in false
Cnt_Request dint retain in 0
AckWaitTime time retain in time#20s
Ok bool retain out false
Error dint retain out false
Running bool retain out false
Status bool retain out 1

The function block only operates if the Enable pin is true. The pins Id, CommonAddress, Common-
AddressResponse and InformationObjectAddress are connected directly to the Read and Write func-
tion blocks inside. The InformationObjectAddress is normally 0 according to the IEC spec. The
seperate Common Address for the Response is to allow the counter request to be sent to the
broadcast address (65535) while receiving the response from the actual slave address.

The request is sent on the rising edge of Send_Req.

Cnt_Req gives the Qualifyer for the counter request (see IEC spec).

AckWaitTime gives the time to wait for the acknowledgement to the counter request. This time has
to be long enough to allow for the transmission of all counter values as the final termination mes-
sage is sent after the counter values have been sent. If the acknowledgement is not received in the
specified time, an error is reported.

63/82

8VAT005003T0001 Cl864

2018-10-19

The Ok pin is set to true once the termination message of the Counter Interrogation has been re-
ceived.

The Error pin is set to true for one task cycle if the termination message is not received during the
specified timeout time.

The Running pin is true while the Counter Interrogation is in progress. It is not possible to send an-
other Counter Interrogation until the previous one is finished.

The Status pin indicates success or failiure of the command. It is 0 while the command is running. It
is set to 1 if the command completes successfully. A negative value indicates an error, —1 indicates
that no answer was received from the partner, —2 that the partner sent a negative acknowledge,
other negative values indicate that the function blocks that actually send or receive data reported
an error.

64782

8VAT005003T0001 Cl864

4.8

2018-10-19

Software configuration with IEC60870SupLib:

This library is deprecated and supplied mainly for compatibility with SV3 and SV4 to simplify up-
grading an existing SV3 or SV4 project to SV5 and it should not be used in new projects in SV5.
Many of the function blocks that were originally in this library have been moved to one of the other
libraries, this library contains those function blocks that have been replaced by incompatible func-
tion blocks.

This library contains function blocks that build on the function blocks from IEC60870CommLib to
offer additional functionality or that add useful functions.

This library contains the following function blocks:

Function Block Description
ConvM_009_ME_NA Convert simple types to a structured variable (IEC ASDU type 7).
ConvM_030_SP_TB Convert simple types to a structured variable (IEC ASDU type 30).
ConvM_031_DP_TB Convert simple types to a structured variable (IEC ASDU type 31).
ConvM_036_ME_TF Convert simple types to a structured variable (IEC ASDU type 36).
ConvMS_030_SP_TB Convert simple types to a structured variable (IEC ASDU type 30).
ConvMS_031_DP_TB Convert simple types to a structured variable (IEC ASDU type 31).
ConvMS_036_ME_TF Convert simple types to a structured variable (IEC ASDU type 36).
ConvMS_037_IT_TB Convert simple types to a structured variable (IEC ASDU type 37).
Decode_DP Decode an IEC DP value into two bool variables.
Decode_DP1 Decode an IEC DP value into three bool variables.
DelayBool Delay a bool signal for one task cycle.

For a detailed description of the function blocks in this library, see the configuration guide for SV4.

65/82

8VAT005003T0001 Cl864

4.9 Software configuration with IEC60870RcvLib:

This library is deprecated and supplied mainly for compatibility with SV3 and SV4 to simplify up-
grading an existing SV3 or SV4 project to SV5 and it should not be used in new projects in SV5.
The function blocks that were originally in this library have been replaced by incompatible function
blocks in IEC60870MasterLib.

This library contains function blocks that build on the function blocks from IEC60870CommLib to
offer additional functionality or that add useful functions.

This library contains the following function blocks:

Function Block Description
RcvM_030_SP_TB Convert a structured variable (IEC ASDU type 30) to simple data
types.
RcvM_031_DP_TB Convert a structured variable (IEC ASDU type 31) to simple data
types.
RcvM_036_ME_TF Convert a structured variable (IEC ASDU type 36) to simple data
types.

For a detailed description of the function blocks in this library, see the configuration guide for SV4.

2018-10-19 66/82

8VAT005003T0001 Cl864

4.10 Example Application

This is a small demo application that implements an IEC Master and Slave with one controller and
two CI864 boards. This example is in structured text, mainly because that is easier to use in this
document in a readable form. For somebody with experience in programming 1131 applications, it
should not be a problem to translate the program into FBD.

For the HW only the parameters that have a value different from the default value are listed here.

4.10.1 Master

The Master uses the CI864 board at position 1; the 1131 program is called "Pro-
gram4_IEC_Master" and runs in the Normal task (250ms).

4.10.1.1 Hardware - 1 C1864

Parameter Value Comment
Primary IP Address 172.18.100.1 IP address of this C1864 board.
IP Subnet Mask 255.255.0.0

4.10.1.2 Hardware - 1.1 IEC60870 Partner

Parameter Value Comment
Partner primary IP Ad- | 172.18.100.61 IP address of the slave.
dress
Initiating communica- true
tion
Control connection true
Common address 356 Common address of the master, same as varia-
ble CA_Own in the 1131 program.
Use local time true Local time is used in the IEC 104 messages.
Report invalid time true
Status conversion OPC_STD Should usually be set to this value, the En-

code/Decode function blocks in the supplied li-
braries assume this setting.

Data type translation BOTH Use this setting if GA is handled according to
the IEC spec (data items sent without
timestamp during GA).

Request GA ACTIVATE Request a GA when the connection is estab-
lished or becomes active.

Use delay buffer true To ensure short signal pulses sent from the
slave are not lost.

Msg delay 600 A bit more than twice the task time (Normal

task with 250 ms cycle time used here).

4.10.1.3 Hardware-1.1.1 IEC60870 Station

Parameter Value Comment
Partner Common Ad- 15716 Common address of the slave, same as varia-
dress ble CA_Partner in the 1131 program.

2018-10-19 67/82

8VAT005003T0001 cl864
4.10.1.4 Variables
Name Data Type Attributes Initial Value
Step_IOA3 dint retain
CA_Own dint retain
CA_Partner dint retain
IEC_Enable bool coldretain true
IEC_Id Comm_Channel retain
IEC_Ok bool retain
IEC_Conn_Ok bool retain
IEC_In_Ena bool retain
IEC_Cmd_Out_Ena | bool retain
MeasVall ReallO retain
MeasVal2 ReallO retain
BreakerOn BoollO retain
BreakerOff BoollO retain
MeasVall IEC MSG_IEC101_036_M_ME_TF_Type retain
MeasVal2_IEC MSG_IEC101_036_M_ME_TF_Type retain
Breaker_IEC MSG_IEC101_031_M_DP_TB_ Type retain
BreakerCmdOn bool retain
BreakerCmdOff bool retain
4.10.1.5 Function blocks
Name Function Block Type Task Connection Description
Calc_Step_IOA3 Conv_IEC_IOA
Calc_CA_Own Conv_IEC_CA
Calc_CA_Partner Conv_IEC_CA
IECConnect ConnectIEC60870
IECPartnerStatus PartnerStatus
IECDetectGaTerm DetectGATerm
Calc_MeasVal_IOA Conv_IEC_IOA
Read_MeasVal IEC60870Receive[2]
Decode_MeasVal Decode_036_ME_TF[2]
Calc_Breaker_IOA Conv_IEC_IOA
Read_Breaker IEC60870Receive[l]
Decode_Breaker Decode_031_DP_TBJ[1]
Calc_BreakerCmd_IOA | Conv_IEC_IOA
Send_BreakerCmd Send_059_DC_TA
4.10.1.6 Code
(* **** Calculate Step Sizes and Common Addresses *)
Calc_Step_I0A3(10Al := O,
10A2 := 0,
10A3 := 1,
IEC_Addr => Step_l0A3);
Calc_CA_Own(CAl := 100,
CA2 := 1,
1EC_Addr => CA_Own);
Calc_CA_Partner(CA1 := 100,
CA2 := 61,
1EC_Addr => CA_Partner);
(* **** Set up connection, enable data transfer,]
IECConnect(En_C := 1EC_Enable,
2018-10-19 68782

8VAT005003T0001

4.10.2

4.10.2.1

2018-10-19

ClPos =1

IEC60870PartnerPos := 1,
Valid => IEC_Ok,
Id := 1EC_Id);

IECPartnerStatus(Enable

1= IEC_Ok,

1EC60870PartnerPos := 1,
1EC_Id,
Statusl => IEC_Conn_Ok);

Id :=

IECDetectGaTerm(Enable

Partner

Start

= 1EC_Ok,
Id := I1EC_Id,
CommonAddress := CA_Partner,

=1,

1EC_Conn_Ok,

Ok => IEC_In_Ena);
IEC_Cmd_Out_Ena := IEC_Conn_Ok;

(* ***** Receive Measurements *)

Calc_MeasVal_IOA(10A1 := 36,
10A2 := 1,
1I0A3 =1);
Read_MeasVal(Enable := IEC_In_Ena,
Id := 1EC_Id,
CommonAddress := CA_Partner,
InformationObjectAddr

InfoObjAddr_StepSize := Step_Il0A3,
Rd[1] := MeasVall_IEC,
Rd[2] := MeasVal2_IEC);

Decode_MeasVal (ConnValid := IEC_Conn_Ok,
Rcwvalid Read_MeasVval.Vvalid,
UpdateOut := Read_MeasVal .NewData,
Inval[1] := MeasVall_IEC,

Outval[1l] := Measvall,

Inval[2]

= MeasVal2_IEC,

Outval[2] := MeasVal2);

(* ***** Receive Breaker *)

Calc_Breaker_IOA(10A1 := 31,
10A2 := 1,
10A3 =1);
Read_Breaker(Enable := IEC_In_Ena,
Id := 1EC_Id,
CommonAddress := CA_Partner,
InformationObjectAddr

InfoObjAddr_StepSize := Step_Il0A3,
Rd[1] := Breaker_IEC);

Decode_Breaker(ConnValid := IEC_Conn_Ok,
Rcwvalid := Read_Breaker.Valid,
UpdateOut := Read_Breaker.NewData,
Inval[1] := Breaker_IEC,

OutvValOn[1] := BreakerOn,
OutValOff[1] := BreakerOff);

(* ***** Send Breaker command *)

:= Calc_MeasVal_10A.IEC_Addr,

:= Calc_Breaker_l10A_IEC_Addr,

Calc_BreakerCmd_I0A(10A1 := 59,
10A2 =1,
10A3 =1);
Send_BreakerCmd(Enable := 1EC_Cmd_Out_Ena,
Id := I1EC_Id,
CommonAddress := CA_Partner,
InformationObjectAddr := Calc_BreakerCmd_l10A.1EC_Addr,
CmdOn := BreakerCmdOn,
CmdOff := BreakerCmdOff);

Slave

Cl864

The Slave uses the CI864 board at position 2; the 1131 program is called "Program5_IEC_Slave"
and runs in the Normal task (250ms).

Hardware - 2 CI864

Parameter Value Comment
Primary IP Address 172.18.100.61 IP address of this C1864 board.
IP Subnet Mask 255.255.0.0

69/82

8VAT005003T0001

Cl864

Use common listentask

true

Usually set to true in any CI864 board that acts
as the listener (Server).

4.10.2.2 Hardware - 2.1 IEC60870 Partner
Parameter Value Comment

Partner primary IP Ad- | 172.18.100.1 IP address of the master.

dress

Initiating communica- false

tion

Control connection false

Common address 15716 Common address of the slave, same as varia-
ble CA_Own in the 1131 program.

Use local time true Local time is used in the IEC 104 messages.

Report invalid time false

Status conversion OPC_STD Should usually be set to this value, the En-
code/Decode function blocks in the supplied li-
braries assume this setting.

Data type translation BOTH Use this setting if GA is handled according to
the IEC spec (data items sent without
timestamp during GA).

Request GA NONE Slave does not receive GA data.

Use delay buffer false Slave does not receive signals that use this
buffer.

4.10.2.3 Hardware-1.2.1 IEC60870 Station
Parameter Value Comment
Partner Common Ad- 356 Common address of the master, same as varia-
dress ble CA_Partner in the 1131 program.
4.10.2.4 Variables
Name Data Type Attributes Initial Value

DatalnitTime time retain time#ls

Step_IOA3 dint retain

CA_Own dint retain

CA_Partner dint retain

IEC_Enable bool coldretain true

IEC_Id Comm_Channel retain

IEC_1d2 Comm_Channel retain

IEC_Ok bool retain

IEC_Conn_Ok bool retain

IEC_Out_Ena bool retain

IEC_Out_Update bool retain

IEC_Cmd_In_Ena bool retain

MeasVall real retain

MeasVal2 real retain

MeasVal3 real retain

MeasVal4 real retain

2018-10-19 70/82

8VAT005003T0001

4.10.2.5

4.10.2.6

2018-10-19

cl864
BreakerOn bool retain
BreakerOn2 bool retain
MeasVall IEC MSG_IEC101_036_M_ME_TF_Type retain
MeasVal2_IEC MSG_IEC101_036_M_ME_TF_Type retain
Breaker_IEC MSG_IEC101_031_M_DP_TB_Type retain
Function blocks
Name Function Block Type Task Connection Description
Calc_Step_IOA3 Conv_IEC_IOA
Calc_CA_Own Conv_IEC_CA
Calc_CA_Partner Conv_IEC_CA
IECConnect ConnectlIEC60870
IECPartnerStatus PartnerStatus
IEC_DataDelay DataDelay
Calc_MeasVal_IOA Conv_IEC_IOA
Encode_MeasVal Encode_036_ME_TF_BNIOJ[2]
Send_MeasVal IEC60870WriteCont[2]
EncWrite_MeasVal EncWrite_013_036_ME_NC_TF_NIO[2]
Calc_Breaker_IOA Conv_IEC_IOA
Encode_Breaker Encode_031_DP_TB_BNIO[1]
Send_Breaker IEC60870WriteCont[1]

EncWrite_Beaker2

EncWrite_003_031_DP_NA_TB_NIO[1]

Calc_Break-
erCmd_IOA

Conv_IEC_IOA

Rcv_BreakerCmd

Rcv_059 DC_TA

CmdRcv_Breaker2

CmdRcv_046_059 DC_NA_TA

Code

(* **** Calculate Step Sizes

Calc_Step_10A3(10A1 o,
10A2 o,
10A3 1

and Common Addresses *)

IEC_Addr => Step_l10A3);

Calc_CA_Own(CA1 :
CA2 :

100,
61,

1EC_Addr => CA_Own);

Calc_CA_Partner(CA1 := 100,
CA2 :=1,
1EC_Addr =>

CA_Partner);

(* **** Set up connection, enable data transfer, ... *)

IECConnect(En_C := 1EC_Enabl
ClPos := 2,

e,

IEC60870PartnerPos := 1,

Valid => 1EC Ok,

Id := IEC_Id);
IECPartnerStatus(Enable := 1EC_Ok,
IEC60870PartnerPos = 1,
Id := 1EC_Id,
Statusl => IEC_Conn_Ok);

1EC_DataDelay(Enable
DataDelay
DatalnitTime

= 1EC_Ok,
:= DatalnitTime,
:= DatalnitTime,

DataEnablel => IEC_Out_Ena,
DataEnablelNew => 1EC_Out_Update);
IEC_Cmd_In_Ena := 1EC_Conn_Ok;

(* ***** Send Measurements *)
Calc_MeasVal_IOA(10A1 := 36,

71782

8VAT00500

2018-10-19

3T0001
10A2 := 1,
1I0A3 =1);
Encode_MeasVal (UpdateOutput := IEC_Out_Update,
Inval[1] := MeasVall,
Hys[1] := 1.0,
OutvVal[1] := MeasVall_IEC,
Inval[2] := MeasVal2,
Hys[2] := 2.0,
Outval[2] := MeasVal2_IEC);
Send_MeasVal(Enable := IEC_Out_Ena,
Id := 1EC_Id,
CommonAddress := CA_Own,

InformationObjectAddr := Calc_MeasVal_IOA.IEC_Addr,

InfoObjAddr_StepSize := Step_Il0A3,

ChangedValues := Encode_MeasVal .ChangedValues,

Sd[1] := MeasVall_IEC,
Sd[2] := MeasVal2_IEC);

(* ***** Send Measurements using a combined Encode/Write block*)

EncWrite_MeasVal (Enablel := IEC_Out_Ena,
1d1l := 1EC_Id,
Enable2 := FALSE,
1d2 := 1EC_l1d2,
CommonAddress := CA_Own,
10A1 := 36,
10A2 := 2,
10A3 := 1

InfoObjAddr_StepSize := Step_Il0A3,

UseTimeStamp := TRUE,

UpdateOutput := IEC_Out_Update,

Inval[1] := MeasVal3,
HysA[1] := 2.0,
Inval[2] := MeasVal4,
HysA[2] := 5.0,
Hysl[2] =1

(* ***** Send Breaker *)

Calc_Breaker_IOA(10A1 := 31,
10A2 := 1,
10A3 =1);
Encode_Breaker(UpdateOutput := IEC_Out_Update,

InvalOn[1] := BreakerOn,

InvalOFf[1] := NOT BreakerOn,

OutvVal[1l] := Breaker_IEC);

Send_Breaker(Enable := IEC_Out_Ena,
Id := 1EC_Id,
CommonAddress := CA_Own,

InformationObjectAddr := Calc_Breaker_I0OA.IEC_Addr,

InfoObjAddr_StepSize := Step_Il0A3,

ChangedValues := Encode_Breaker.ChangedValues,

Sd[1] := Breaker_IEC);

(* ***** Send Breaker 2 using a combined Encode/Write block*)

EncWrite_Beaker2(Enablel := IEC_Out_Ena,
1d1l := 1EC_Id,
Enable2 := FALSE,
1d2 := 1EC_l1d2,
CommonAddress := CA_Own,
10A1 := 31,
10A2 := 2,
10A3 := 1

InfoObjAddr_StepSize := Step_Il0A3,

UseTimeStamp := TRUE,

UpdateOutput := IEC_Out_Update,

InvValOn[1] := BreakerOn2,

InValOFf[1] := NOT BreakerOn2);

(* ***** Receive Breaker command *)
Calc_BreakerCmd_I0A(10A1 := 59,

10A2 =1,
1I0A3 :=1);
Rcv_BreakerCmd(Enable := IEC_Cmd_In_Ena,
Id := 1EC_Id,
CommonAddress := CA_Own,

InformationObjectAddr := Calc_BreakerCmd_I0A.IEC_Addr,

Blocked := FALSE,
CmdAutoAck := TRUE);

IF (Rcv_BreakerCmd.CmdOn) THEN BreakerOn :
IF (Rcv_BreakerCmd.CmdOff) THEN BreakerOn :

(* ***** Receiver Breaker 2 command using a combined command block*)

CmdRcv_Breaker2(Enablel := IEC_Out_Ena,

TRUE; END_IF;
FALSE; END_IF;

Cl864

72/82

8VATO005003T0001 Cl864

1d1 := 1EC_Id,

Enable2 := FALSE,

1d2 := 1EC_Id2,
CommonAddress := CA_Own,
10A1 := 59,

10A2 := 2,

10A3 := 1

UseTimeStamp := TRUE,
UseSelectExecute := FALSE);

TRUE; END_IF;

IF (CmdRcv_Breaker2.CmdOn) THEN BreakerOn2 :
FALSE; END_IF;

IF (CmdRcv_Breaker2.CmdOff) THEN BreakerOn2 :

2018-10-19 73/82

8VAT005003T0001 Cl864

5

5.1

2018-10-19

Section 5 - Advanced Topics

This section addresses several advanced topics. It is not possible to discuss these topics exhaust-
ively since there are many different ways to address them in the context of any specific application.

We (ABB Austria) can provide support to address these topics when needed, but we will usually
need to charge extra for this if the required support requires more work than answering a few ques-
tions via telephone or email.

Redundancy

Redundancy can be implemented in a lot of different ways, it is not possible to describe all of them
here; this chapter can only give an overview of some of the possible tools the CI864 has to be used
in redundant configurations. How the redundancy is implemented usually depends on the priorities
and philosophy of the customer and the capabilities of the system at the other end of the IEC con-
nection.

The CI864 does not impelment the normal Cl board redundancy, but it provides a number of tools
to support redundancy, so that a fully redundant system can be impemented with application sup-
port. The appropriate configuration has to be determined on a case by case basis as the IEC part-
ner systems will have different requirements.

Controller redundancy is supported and is transparent to the CI864 board, that is it makes no differ-
ence for the IEC connection redundancy if a redundant PM8xx is used or not or if a BC810 CEX-
Bus splitter is used.

The data transfer in a redundant setup is normally done in such a way that there is always exactly
one active connection that transfers data. This can be achieved either by sending the data only on
one connection or by sending the data on both connections and only using the data from one con-
nection at the receiving end.

In a full redundancy setup with a total of 4 connections, these two options are usually combined
(the active slave sends data to both masters, and only the active master processes the data).

The data transfer can be defined differently depending on the data type.

Monitoring data can be handled in two different ways on the passive connection on the receiving
side. Either the CI864 board does not process the data or the CI864 board does process the data
but it is not read (the Receive blocks are not enabled).

In the first case, the HW Parameter "Request GA" would be set to "ACTIVE" and the Receive
blocks should only be enabled after the GA has been performed.

In the second case, the HW Parameter "Request GA" would be set to "CONNECT". In this case the
passive connection has up-to-date data and the Receive blocks can be enabled right after switch-
over.

Each IEC ASDU type is defined to use one of 4 different redundancy types in the Conversion List.
The types are Monitoring and Command (the behavior of these two types is defined by the HW pa-
rameter Redundancy), Active (sent/received on the active connection) and System (always sent/re-
ceived).

When sending data a monitoring data type that is not sent (because the connection is not active) is
still entered into the data cross reference so it is available for a GA. Data types that are not entered
into the cross reference (commands) are silently discarded.

When receiving data, data types that are not to be handled are silently discarded on the passive
connection.

The effect of the redundancy type from the Conversion List and the HW parameter Redundancy on
a passive connection is as follows:

NONE | STANDBY | SHADOW | REVERSED | DUAL | INCOMING | OUTGOING

System Y Y Y Y Y Y

Active

74/82

8VAT005003T0001 Cl864

Incoming Moni- Y Y Y Y

toring

Incoming Com- Y Y Y

mands

Outgoing Moni- Y Y Y
toring

Outgoing Com- Y Y Y
mands

"Y" means that a message of this type is processed, otherwise it is silently discarded.

The active connection always handles all messages. Messages that are sent in response to an-
other message use the settings of the original message

The CI864 does not currently implement any buffers to buffer events during a break in the commu-
nication or on a passive connection. Events will be lost during a break in the communication or a
redundancy switchover. It is only guaranteed that the state of the system will be consistent after the
switchover or initialization is complete, this usually means after the General Interrogation has com-
pleted.

5.11 Simple System

The trivial case, no redundancy of any kind is implemented. A single CI864 connects to a single
IEC partner. The following HW settings are suggested:

Redundancy NONE, the ClI board is always active
Request GA CONNECT or ACTIVATE, if we receive monitoring data to request a GA when the
connection is established. NO if we implement a pure slave and don't receive monitoring data.

BG Data Send NO; CONNECT or ACTIVATE if we send monitoring data and the IEC partner does
not request a GA when the connection is established.

51.2 One CI864 connected to a redundant Partner

In this case a single CI864 connects to two different partners. A single IEC Partner object is defined
with two Partner IP addresses. The IEC Partner object can handle the redundancy switchover auto-
matically, unless the default switchover logic is not appropriate, for example if the secondary con-
nection is slower and should always be used only as backup. In this case the active connection has
to be determined by the application and set using the SetPartnerActive function block.

Possible values for the Redundancy parameter:

NONE No redundancy, that is both connections are always fully active. This is usually
paired with the redundancy type STANDBY on the other side.

STANDBY The passive connection does not handle any data. This is usually paired with re-
dundancy type NONE.

SHADOW Monitoring data is sent on both connections and only accepted by the active con-
nection. Command are only sent on by the active side but accepted by both connections. This is
paired with itself, that is SHADOW redundancy is selected on both sides.

REVERSED Monitoring data is sent on the active connection and accepted on both connec-
tions. Commands are sent on both connections and accepted by the active side. This is paired with
itself and is basically the opposite of SHADOW.

INCOMING Data is sent on both connections and only accepted by the active connection. This
is paired with itself, that is INCOMING redundancy is selected on both sides.

OUTGOING Data is sent on the active connections and accepted by both connections. This is
paired with itself, that is OUTGOING redundancy is selected on both sides.

DUAL is usually used in systems with redundant Cl boards.

2018-10-19 75/82

8VAT005003T0001 Cl864

5.1.3

5.14

2018-10-19

Redundant CI864 boards

Two CI864 boards are used as a redundant pair. It does not usually make a big difference for the
configuration if the other side is redundant as well or not (for example, a RedundancyDual function
block would be used if the other side is redundant, otherwise a Redundancy block would be used)
as this is mostly handled internally in the CI864 board. As the two CI864 boards do not know any-
thing about each other, the active board has to be determined by the application and set using the
SetPartnerActive function block.

Possible values for the Redundancy parameter:

NONE, SHADOW, REVERSED and OUTGOING would be used only if the other side is not redun-
dant, much as in the case above.

STANDBY The passive connection does not handle any data. If the other side is not redun-
dant, it would use the redundancy type NONE, if the other side is redundant, it would also use re-
dundancy type STANDBY.

DUAL The passive board only handles incoming monitoring data. To keep the incoming
monitoring data consistent, only the Receive blocks of the active C1864 board are enabled. This en-
ables a faster switchover because the passive CI864 board processes the data and has it ready to
be read by the Receive blocks. This setting would be paired with either itself or INCOMING.

INCOMING This is similar to DUAL, except that commands are also processed by the receiv-
ing side. This is usually not a problem as the output of the two function blocks that receive com-
mands are "or-ed" anyway.

The difference between the DUAL and INCOMING are that the priority for commands is different.
With DUAL, it is possible that a command is lost during switchover, with INCOMING it is possible
that commands are executed twice during switchover.

Data Consistency of received data

The protocol handler for the CI864 keeps a buffered list of all the received data items for each IEC
Partner. This list is queried by the Receive blocks; the information that matches the IOA addresses
for this Receive block is reported to the 1131 application. When new data is received for a data
item, the information in this list is overwritten and the new data is reported to the Receive block.

This list is cleared when the connection to the IEC partner object in the CI864 block is broken (the
Connect block is disabled or goes invalid because of an error); the list is not cleared when the con-
nection to the partner is lost.

This is not a problem in a simple system or when one CI864 board connects to two partners (the
two connections of one IEC Partner share a buffer). In this case the Receive blocks will either not
report any data or will report the latest received data.

When redundant CI864 boards are used, it is possible that the buffer of the passive connection
contains outdated data; this depends on the chosen redundancy scheme.

There are several methods that can be used to address this problem and to ensure that only "cur-
rent" information is reported to the 1131 application. This is only relevant for monitoring data types
that use General Interrogation / spontaneous transmission or cyclic transmission. Queried data
(counters) and commands use different schemes to address this problem.

Sequence of events during switchover:

< Normal operation; both connections are working, connection A is active. Connection B is
working, but it is not considered to have current data.

e An error is detected on connection A and switchover is performed. Connection A is set to
passive (SetPartnerActive function block).

e Connection B is set to active (SetpartnerActive) function block. This causes a general inter-
rogation to be requested from the partner (Request GA is set to ACTIVATE).

< Wait for the end of the general interrogation (DetectGATerm function block). When the end of
the general interrogation is received, the data is considered to be consistent and the Receive
function blocks are enabled.

If the passive connection is assumed to have current data (Redundancy is set to DUAL or
INCOMMING, Request GA is set to CONNECT and the partner sends data on all connections),
then the Receive blocks can be enabled right after the connection is set to active. It is still a good
idea to enable them only after the end of a GA has been detected (in this case right after the con-
nection is established; not when it becomes active) or it has been ensured by some other means
that all data items have been sent on the connection.

76/82

8VAT005003T0001 Cl864

This logic will work in many cases, but there are some possible problems:

e Some partners will send an "end of general interrogation” message in response to a GA Re-
guest but will not send any actual data when they are passive. In this case the DetectGA-
Term function block can not be considered a reliable indicator that the data on the connec-
tion is current.

e Some data items are not sent during a GA, but only sent spontaneously. This is typically not
a problem for IEC-101 or -104, but it is possible in -103. These data items may still have ob-
solete data after the GA. This usually includes data items for which only one flank is sent;
see "Use Second Messages for one flank items" in the Options setting of a Station.

e The GA may take a long time to execute and any message pulses (one data item sent with
"on" status and then with an "off" status) will be ignored. This is typically not a problem with
the IEC-104 protocol since data transfer is fast. This can be a big problem with -101 and -
103, especially in a party-line configuration. This is especially a problem if important mes-
sages are buffered (e.g. a Breaker Trip) during a break in the communication and sent right
after the connection is established (during the GA).

The "Version 2" Decode blocks (name ends with *_V2") are designed to address these problems.
They are not necessarily "better" than the normal blocks, but they use a different method to insure
data consistency. The V2 Decode blocks are suited for redundancy schemes where the second
connection does not have current data (such as Line Sharing Redundancy) as this method always
assumes data on the passive line to be outdated.

The V2 Decode blocks use a Compare Buffer to check for data changes.

Sequence of events during switchover:

< Normal operation; both connections are working, connection A is active. Connection B may
be working, but it is not considered to have current data.

e An error is detected on connection A and switchover is performed. Connection A is set to
passive (SetPartnerActive function block).

* The Receive blocks of connection B are activated. The status of the connection will be re-
ported as "bad" to the Decode blocks (ConnValid pin is FALSE).
Any data reported by the Receive blocks at this time will be stored in the Compare Buffer of
the Decode blocks, but will be considered outdated and will not be reported to the rest of the
1131 application. There should be a short delay before the next step (at least two task cy-
cles) to ensure that all Receive blocks report their data to the Decode blocks and the De-
code blocks process the data.

< Connection B is set to active (SetpartnerActive) function block. The status of the connection
will be reported as "good" to the Decode blocks (ConnValid pin is TRUE) as long as it is ac-
tually "good" (when using Line Sharing Redundancy the connection can only become "good"
after it is set active). From this point on all data received by the Decode blocks will be con-
sidered current and will be reported to the 1131 application.
This causes a general interrogation to be requested from the partner (Request GA is set to
ACTIVATE).
If a data item is not sent after the switchover (e.g. because it is only sent spontaneously), it
will still contain the data from the last time it was received (or it will remain "bad").

In both methods there is a time window during switchover during which spontaneously sent data
will be discarded.

There are other possible methods to ensure data consistency; at the moment only the two methods
described above are implemented. It is possible to implement other methods if needed to meet
specific customer requirements. Depending on the specifics of the method, it could be possible to
implement them with customized Decode blocks or it could require changes to the CI864 firmware
or Protocol Handler.

2018-10-19 77/82

8VAT005003T0001 Cl864

5.2

521

5211

5212

2018-10-19

Library Design

The standard libraries supplied with the 800xA system are not prepared for remote communication.
This is acceptable in a plant where there is relatively little external communication (specifically us-
ing the IEC 60870-5-104 protocol, but also other similar protocols), but when there is a lot of such
communication, this leads to loss of functionality and/or requires a lot of extra work to implement
workarounds to add the required functionality outside the "standard" library objects.

Example:

A breaker in a substation: The breaker is represented by a UniSimpleM control module in the sub-
station. There is another such module in the central station, from where the same breaker can be
controlled remotely.

Communication between the two stations is via the IEC 60870-5-104 protocol. The state of the
breaker is represented by a data item of the IEC type 31 (dual pole with timestamp), the commands
from the main station are sent as a command of type 46 (dual pole command) and there extra data
items of type 30 or 31 associated with the breaker, such as an error indicator and control location
(is the breaker in local or remote control).

Remote Control:

The first problem is how to handle commands in remote mode. Remote mode means that the
breaker is controlled from the central station, rather than from the substation. Local mode can have
two different meanings, depending on the context; either control from the hardwired buttons
(LocMode) or control from any location in the substation. Typically a switch or lock is used in the
substation to determine if the breaker is controlled from the substation or from the central station.

First, the UniSimpleM control module does not have a "Remote" mode. If there is no panel control,
then it would be possible to "abuse" the panel mode for remote control. If panel mode (and auto
mode) is already used, the remote mode has to be "piggybacked" on one of those two modes:
when the breaker is in remote control, it is switched to AutoMode, but the usual AutoCmd signals
from logic are disabled. Conversely, when the breaker is in actual AutoMode (controlled from logic
in the substation) then it is also in AutoMode, but the AutoCmd signals from the IEC program are
disabled. A problem with this solution is that it isn't apparent in the faceplate if the breaker is under
logic control or if it is controlled from the central station.

A solution for this problem would be to create an extended version of UniSimpleM (or UniM) that
includes RemExists, RemMode, RemCmd0 and RemCmd1 inputs on the control module plus logic
to handle them and the indicators to display the mode in the faceplate and graphic elements.

The whole problem is much simpler in the central station, whenever the breaker can not be con-
trolled from the central station it is in LocMode.

There is a second problem in the central station:

Executing any command over the IEC connection takes a certain amount of time. It is not possible
to give a second command (for the same data item) until the first command is finished (or it can
lead to problems). Ideally the UniSimpleM control module should have an input that is connected to
the Running output pin of the Send_xxx function block that sends the command. This input should
delay output of further commands until the first command has concluded.

Timestamps:

The second problem is that timestamps will not be consistent between the substation and the cen-
tral station. This is not so much a problem for commands, where it can be argued that the differ-
ence is actually useful (the timestamp in the central station denotes when the command was issued
and the timestamp in the substation denotes when the command was processed), but it may not be

78/82

8VAT005003T0001 Cl864

acceptable to have a (possibly relatively big) difference in the timestamps for the feedback infor-
mation. It depends very much on the application if the difference in the timestamps between the
logs in the substation and the central station is a problem or not. It also depends on the customer, if
he requires accurate logs in the central station or if he is content to look at the logs in the substa-
tion when accurate timestamps are required.

Below is a list of the steps involved in transferring a signal change from the source to the central
station. Most of these steps represent a point at which a timestamp can be generated and possibly
sent for use in later steps.

Also given is the typical delay between each step and the previous one and on what this delay de-
pends. In some cases the delay can be much higher under adverse conditions (very high load, net-
work problems that require retransmissions ...)

1) I/O Module (SOE).
2) Control Module in the Slave. (I/O delay plus Task cycle, 10 ms to 1 sec)
3) Encode/Write block in IEC program of the slave. (Task Cycle, 0 ms to 1 sec)

4) Protocol Handler in the slave (sends data from PMxxx controller to the CI864 module). (Task ex-
ecution time plus Load of controller, 0 to 10 ms)

5) Firmware in CI864 in the slave (sends the data). (Load of the Cl board, 10 ms to 100 ms)

6) Firmware in CI864 in the master (receives the data). (Transmission time on the wire plus Load of
the Cl board, 10 ms to 100 ms)

7) Protocol Handler in the master (processes the data from the CI864 and makes it available for the
application in the PMxxx controller) (Load of controller, 0 to 10 ms)

8) Receive/Decode block in the IEC program of the master. (Task Cycle, 0 ms to 1 sec)
9) Control Module in the Master. (Task Cycle, 0 ms to 1 sec)

Using the standard libraries, the log in the slave would use the timestamp generated in step 2 (step
1 if SOE input modules are used) and the log in the master would use the timestamp generated in
step 9. As one can see, the timestamp in the master can be off by a significant amount.

It is currently (SV 5.0 SP2) not possible to access the timestamp from a SOE input module in the
application; therefore it cannot be used in any of the later steps or sent via the IEC 60870-5-104
protocol.

Here are some ideas on how to improve the accuracy of the timestamp in the master, working
backwards from step 9 (it makes no sense to generate and send an accurate timestamp if it is not
used in a later step).

Step 9: The Control Module or Function Block that logs the event in the master has to be able to
use an external timestamp (has an input for it). UniSimpleM and UniM do not have such an input,
so either an extended variant of these Control Modules has to be used or the event has to be
logged using a different method (such as using a SimpleEventDetector).

If a timestamp generated in an earlier step is used, the task cycle of the modules can be increased
without sacrificing accuracy, reducing CPU usage in the master and possibly allowing more data
items to be used per controller.

It is possible to generate timestamps in either step 6 or step 8, but this is somewhat unusual; if an
accurate timestamp is wanted, it is typically generated in the source station. This would only be
used if the source station sends data types that do not include a timestamp.

Without further logic to generate a timestamp manually, the provided libraries will generate the
timestamp in step 4. This is always the case if the "Basic" Encode function blocks are used; the
"full" Encode function blocks allow a timestamp that was generated earlier to be used.

The Encode function blocks in the provided libraries are not protected, so it is possible to add logic
to the blocks to monitor the data items and generate a timestamp when it changes (step 3).

2018-10-19 79/82

8VAT005003T0001 Cl864

5213

2018-10-19

The best solution is to add the code that generates the timestamp to step 2 and put it into the con-
trol module. This allows the timestamp to be consistent between the slave and the master station
(unless SOE inputs are used). With properly optimized control modules it should be possible to ex-
ecute the control modules at a fast rate (10 to 100 ms) without overloading the CPU of the slave
station.

Alternatively the timestamp could be generated by seperate logic that runs in a very fast task.

Putting the logic that generates/uses the timestamp into the control modules has the advantage
that it simplifies engineering. This is highly recommended if this functionality is used extensively (for
more than a few signals).

If timestamps are generated by logic, then care has to be taken that they are generated correctly;
that they are generated whenever the signal changes. This includes changes in the status as well
as changes of the value. Note that the Encode function blocks for analog values ignore the
timestamp if Hysteresis processing is used.

Optimization and Customization:

The provided libraries are designed to be generic so they can be used with different libraries or ap-
plication design. On the other hand, this means that they are not optimized for any particular library.
This is acceptable if the IEC communication makes up only a small part of the whole project, but it
will lead to reduced functionality, higher resource usage (CPU load) and increased engineering
cost.

The provided libraries (e.g. IEC60870SlaveLib) are not protected, so it is possible to modify the
function blocks in them. It is recommended not to change the libraries directly, but to copy any func-
tion blocks that need to be modified to a seperate library with a different name.

Tailoring the IEC function to fit the particular requirements of a particular library or project will of
course cause up-front costs, but it can decrease total cost and make the application better reada-
ble, simpler and faster. This will usually only make sense if the library the IEC functions are used
together with is also modified; see the discussion about timestamp accuracy above.

If the decision is taken to include functionality for the IEC connection in the standard library (for ex-
ample to generate timestamps), it is a good idea to make structured types that include the
timestamp together with the 1/O signal and to customize the Encode / Decode functions to handle
this as this simplifies engineering and reduces CPU load.

80782

8VAT005003T0001 Cl864

6 Appendix A - Diagnostics

6.1 LED Indicators

There are six LED indicators on the front of the CI864 Expansion Module.

« FAIL Ared LED that indicates an error of some kind.

e RUN A green LED that indicates that the board is running.

e Tx1/Rx1 Two yellow LEDs that indicate traffic on the first network port.

e Tx2/Rx2 Two yellow LEDs that indicate traffic on the second network port. (Not used).

The FAIL and RUN LED are used together to impart information about the state of the Cl module.
When the Cl board starts up, it goes through several stages that are indicated by different combina-
tions of the two LEDs.

« Selftest FAILis on, RUN is off.
After Power-up the CI864 module performs a selftest. This takes approximately 40 seconds.
When the selftest is finished the FAIL LED is switched off and the RUN LED blinks once or
twice (if the firmware is MAC address locked).

e Wait for Network Configuration FAIL is off, RUN is off.
The CI864 is initialized and waits for the hardware configuration from the AC800M controller.
When it receives a valid configuration, it continues with the next stage.
MAC address lock: If the firmware is MAC address locked and loaded on a wrong Cl mod-
ule, both FAIL and RUN are on. The CI864 will not enter Run stage.
Configuration Error: Some configuration errors will prevent the Cl module from entering the
Run state; others will be reported after the Cl board enters the Run stage.

* Run FAIL is off, RUN is on.
Configuration Error: Most of the hardware configuration is done at this stage. If there is an
error, both FAIL and RUN are on. Depending on the nature of the configuration error, either
all or only the affected IEC partner connections will not work until the error has been cor-
rected. (The Connect function block(s) will fail).
Firmware Expired: If the firmware is time-restricted and the time limit has expired, then
FAIL and RUN are on. The ClI board will not process most messages.

7 Appendix B - Interoperability List

See [CI864_iec60870-5-104-Clause9.doc].

8 Appendix C - Conversion List

To minimize the amount of protocol-specific information that has to be hard-coded into the CI firm-
ware and to make it possible to quickly add new data types, information about the various ASDU
types is configured in the conversion list. ASDU types that are not in the conversion list cannot be
handled by the CI864. New ASDU types can be added through the conversion list as long as they
obey the same syntactic rules as the existing types, have a fixed size and contain no more than 7
data fields of up to 4 bytes each. An ASDU type may contain additional constant data fields.

Detailed knowledge of the protocol and the CI firmware is required to add new ASDU types.
See [Conversion List.doc] for more information.

2018-10-19 81/82

8VAT005003T0001 Cl864

9

2018-10-19

Appendix D - Implementation Limits

One CI864 module can handle up to 8 IEC partners or 8 pairs of redundant partners. The CPU of
the currently used hardware limits this to 8 partners total, e.g. 8 single partners, 4 pairs of redun-
dant partners or any combination of the two.

Each partner can have up to 2000 data items. CPU power and available memory will limit the total
number of data items

One CI864 module can handle up to 50 telegrams with a total of 300 data items per second. It can

handle short bursts in excess of that by buffering data items until they can be sent to the IEC part-
ner.

82/82

