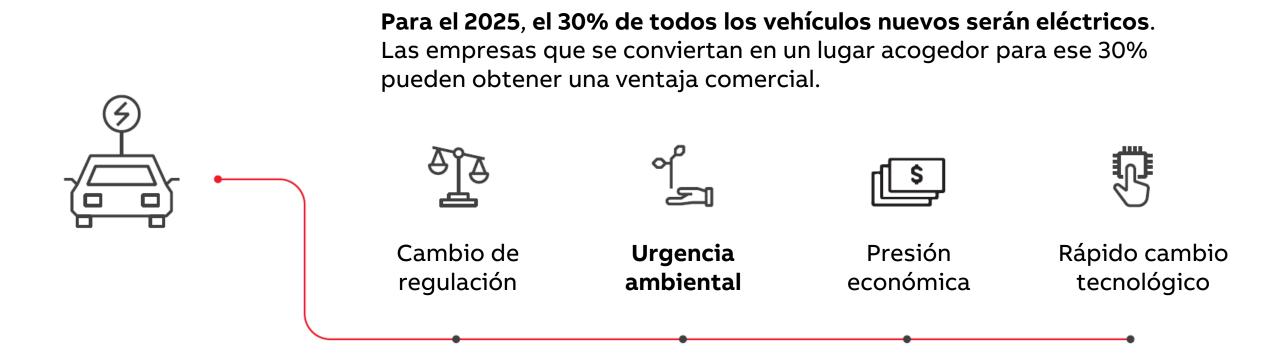


AGOSTO, 2020

El futuro de la movilidad electrica


Infraestructura de carga de vehiculos electricos

Oscar Cruz

¿Por que un Vehículo Eléctrico?

El futuro de la movilidad....

Solo nos quedan 12 años para limitar la catástrofe del cambio climático, advierte la ONU

El por qué queremos que todo el mundo conduzca coches eléctricos, cargados con energía limpia y renovable

El mundo ya es 1 ° C más cálido hoy

El acuerdo de Paris. Originalmente se estableció un limite de 2 ° C. Ahora hay un creciente reconocimiento de que el límite anterior es peligroso y necesitamos limitarlo a 1,5 ° C

Con el nivel actual de compromisos, el mundo va camino de un desastroso calentamiento de 3 ° C

Para mantenerse dentro de 1,5 ° C, la contaminación global por carbono debería reducirse en un 45% para 2030, en comparación con un recorte del 20% en la vía de 2 ° C, y reducirse a cero para 2050, en comparación con 2075 para 2 ° C.

2/3 de la contaminación global por carbono proviene del sector del transporte y la generación de energía

Original source: Auke Hoekstra, Eindhoven University of Technology. Data was modified due to improved performance of biofuel and hydrogen.

Eficiencia total de los combustibles alternativos

Rango por año por m² de terreno

Bio-combustibles: 7km

Los cultivos energéticos más eficientes (aceite de palma, caña de azúcar) producen 0,5 L / m², incluida la siembra, fertilización, cosecha, refinamiento y distribución.

Un vehículo recorre 15 km / L, por lo que 0,5 L da un alcance de 7 km.

Hidrogeno: 160km

Un panel solar genera 105 kWh / m²

Después de la electrólisis, compresión y distribución, 63kWh ingresan al tanque.

Una celda de combustible genera 31,5 kWh de electricidad.

El vehículo recorre a 5 km / kWh, por lo que 31.5 kWh dan un alcance de 160 km.

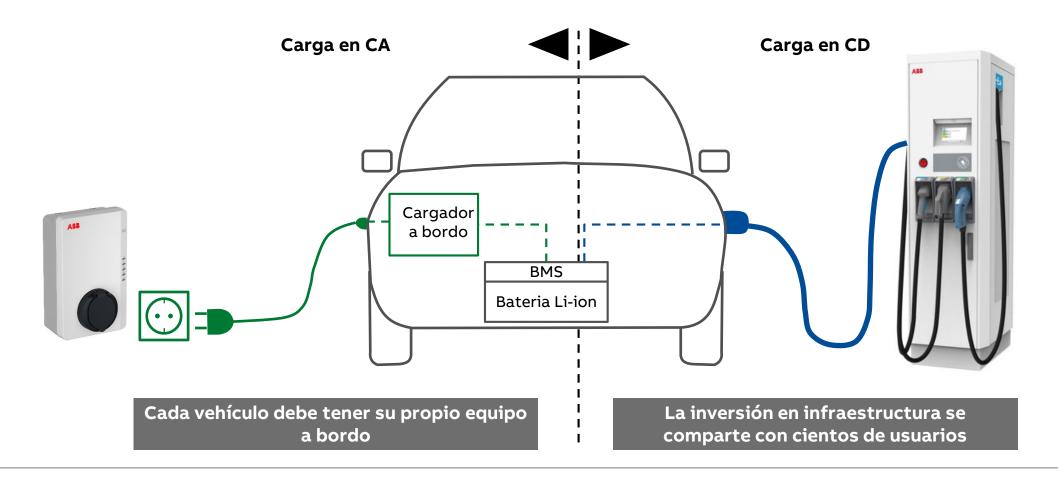
Electricidad: 380km

Un panel solar genera 105 kWh / m².

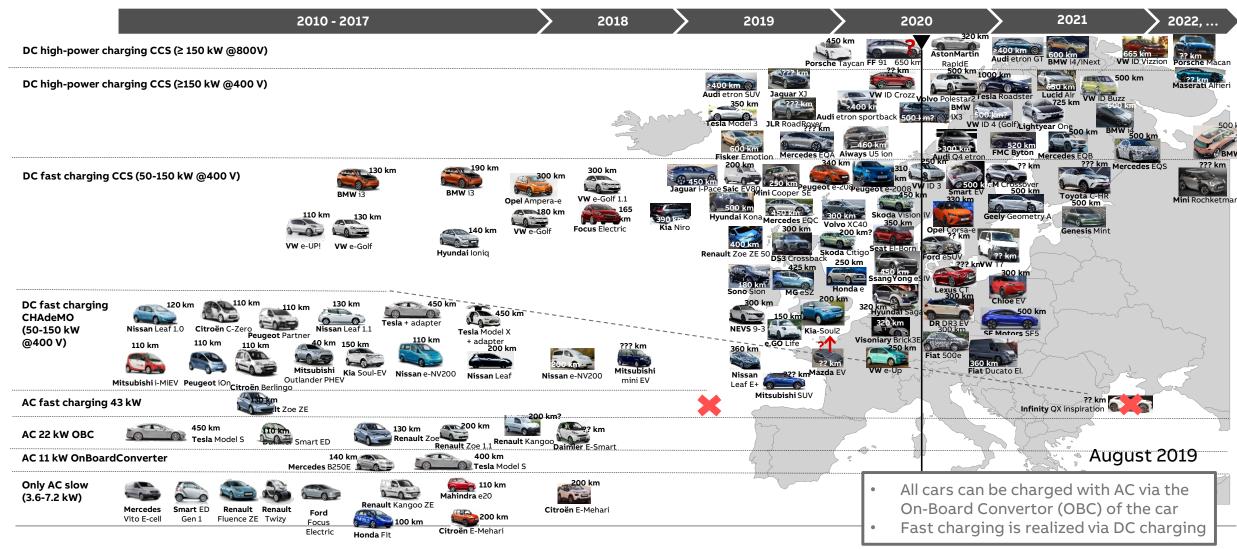
Después de la distribución, carga y almacenamiento en la batería, el motor dispone de 77 kWh.

Un vehículo eléctrico recorre a 5 km / kWh, por lo que 77 kWh dan un alcance de 380 km.

Observación: los últimos paneles solares pueden ser más eficientes que los mencionados aquí, lo que aumenta la brecha con los biocombustibles, mientras que la diferencia entre el hidrógeno y la electricidad permanece.



¿Que deberia saber?


Carga en CA contra la carga en CD

Equipo a bordo versus equipo externo

Follow the car through Europe, and open standard protocols

¿Que otro factor determina la selección del Cargador?

Carga de vehículos eléctricos

Desarrollo de protocolos.

ABB ha desarrollado cargadores con tres tipos conectores para el mercado Mexicano, conector en CA (Protocolo **SAE J1772**), y con conectores en CD (**CHAdeMO** & **CCS1**)

Los vehículos marcas orientales incluyen dos puertos para ser alimentados con cualquier conector, sea SAE **J1772** (CA) y **CHAdeMO** (CD)

Tipo de conectores en las estaciones de recarga eléctrica

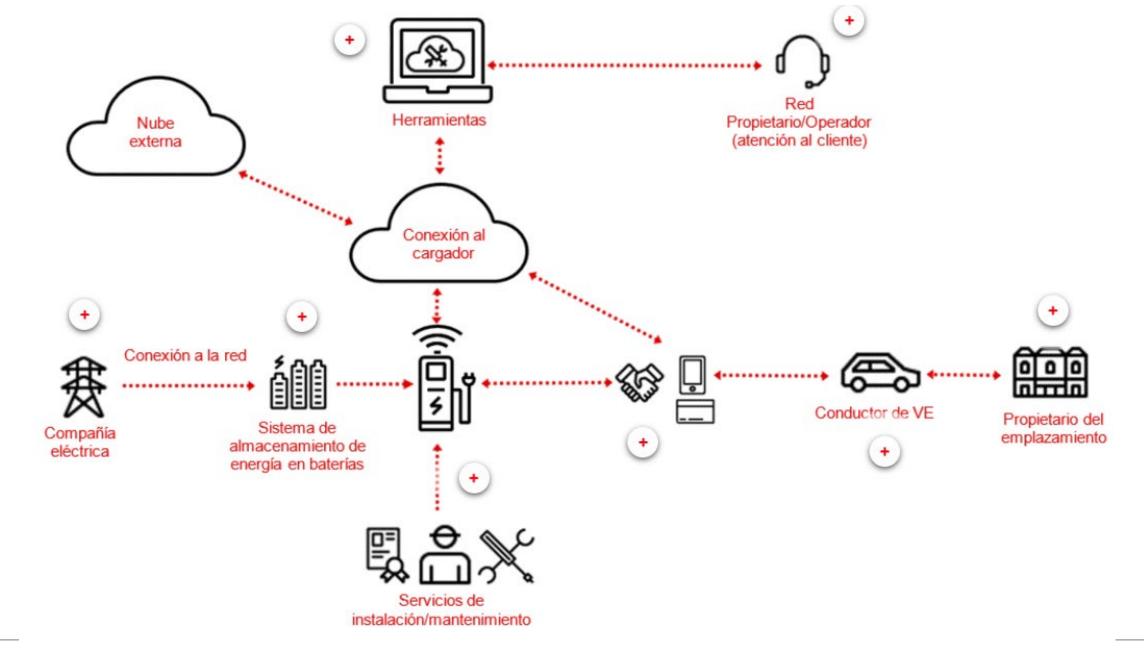
Conector CHAdeMO Zona de uso: Japón Voltaje: 500 volts Nivel de carga: 3 Amps: 120 A

Combo 2, Conector EU DC CCS Zona de uso: EUropa Voltaje : 200-850 volts Nivel de carga: 2 y 3 Amps: 65 A - 200 A

Conector Tesla
Zona de uso: Norteamérica
Voltaje: 110-250 volts en corriente
alterna (VAC) y 480 volts en
corriente directa (VDC)
Nivel de carga: 1, 2 y 3

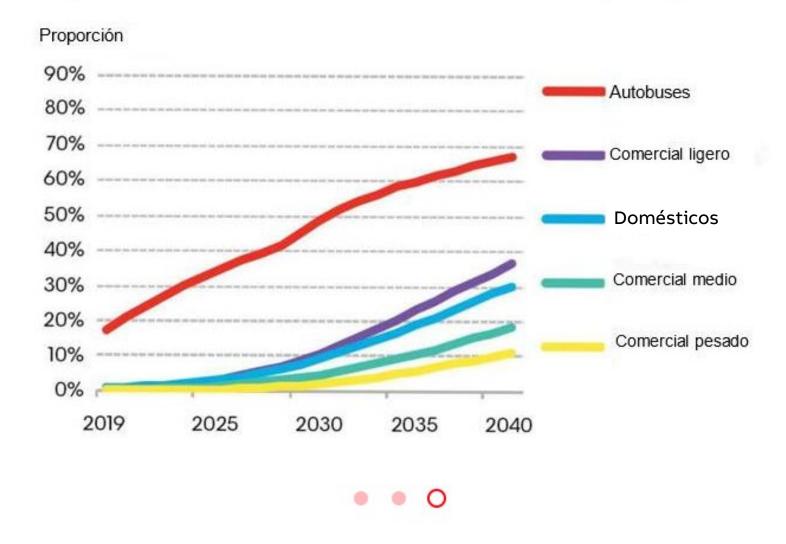
Amps: 12 A - 80 A - 100 A simple a

trifásico



Conector IEC 62196 Mennekes Zona de uso: Europa y China Voltaje: 250-400 volts Nivel de carga: 1 y 2 Amps: 63 A simple a trifásico

¿Que nombre le pondrían a las estaciones de carga eléctrica en ruta?



¿Que otro tipo de vehículo Eléctrico existe?

Movilidad de Pasajeros

Proporción mundial de la flota vehículos eléctricos por segmento

Fuente: Bloomberg NEF

¿Por qué son una buena opción los autobuses eléctricos?

Los VE son la tecnología menos compleja para transporte continuo. La transmisión de un vehículo eléctrico requiere 20 piezas móviles, una cifra que asciende hasta las 2,000 en el caso de los vehículos de combustión interna, lo cual reduce el costo de mantenimiento.

HVC Product portfolio

	24kW	50kW	100kW	150kW	300kW	450kW	600kW
Connector							
	DC-Wallbox	Terra 54HV	HVC 100C 1-3 depot box	HVC 150C 1-3 depot box			
Pantograph Down							
				HVC 150PD kit / HVC 150PD	HVC 300PD	HVC 450PD	HVC 600PD
Pantograph Up							
		Terra 54HV PU	HVC 100PU-S / HVC 100PU	HVC 150PU-S / HVC 150PU	HVC 300PU	HVC 450PU	HVC 600PU

Resumen

Carga de vehículos públicos y comerciales - Aplicaciones

El servicio de carga debe coincidir con la aplicación y la demanda de carga

Carga de vehículos eléctricos públicos y comerciales								
En destino - CA	En destino - CD	Rapida - CD	Alta Potencia en CD					
3-22 kW	20-25 kW	50 to 150 kW	150 to 350 kW+					
4-16 horas	1-3 horas	20-90 min	10-20 min					

- Oficina, lugar de trabajo
- Hogar
- Vivienda multifamiliar
- Hotel y hospitalidad
- Flota nocturna
- Suplemento en los sitios de carga de CC para PHEV

- Oficina, lugar de trabajo
- Hotel y hospitalidad
- Estructuras de estacionamiento
- Concesionarios
- Flotas urbanas
- Campus público o privado

- Supermercado, centro comercial, restaurante
- Estacionamiento de alta rotación
- Estaciones de servicio de conveniencia
- Paradas de camiones de carretera y plazas de viaje

- Viajes por autopista
- Paradas de descanso en autopistas
- Áreas de gasolineras
- Estaciones de servicio dentro de la ciudad

Carga de vehículos públicos y comerciales - Portafolio

El servicio de carga debe coincidir con la aplicación y la demanda de carga

Carga de vehículos eléctricos públicos y comerciales									
En destino - CA	En destino - CD	Rapida - CD	Alta Potencia en CD						
3-22 kW	20-25 kW	50 to 150 kW	150 to 350 kW+						
4-16 horas	1-3 horas	20-90 min	10-20 min						
Terra AC	DC Wallbox 24	Terra 54, Terra 94,	Terra HP						

Terra 124, Terra 184

ABB EV Infraestructura de carga

Conectividad Diagnóstico remoto, pago, gestión de edificios Carga de Vehiculos Pesados Carga de Autos 4-22 kW AC 24kW DC 50 kW -180 kW 50kW-150kW with 150kW-350kW with 150kW-600kW with Wallbox All-in-one **Automated Connection** Charger sequential charging liquid cooled cable Integración a la red Subestaciones compactas, transformadores, tableros Servicio y Mantenimiento Servicio global, refacciones, mantenimiento y capacitación de terceros

El futuro de la movilidad elé Eléitaico!!

Material de consulta

Curso básico de movilidad eléctrica

https://mylearning.abb.com/?q=share/learning/class-details/104421

ABB Smart Societies

https://abbsmartsocieties.com/

Electrification solutions for the future of emissions-free transportation

https://new.abb.com/about/our-businesses/electrification/smart-transportation/campaigns/emobility-solutions

Gracias por su asistencia

Rafael Oscar Cruz

PMM Electric Vehicle Charging Infrastructure Electrification ABB México, S.A. de C.V.

Mobile: + 521 33 1894 8151

email: <u>oscar.cruz@mx.abb.com</u>

#