ABB Dry-type Transformers

Dry transformers: providing valuable solutions to many electrical systems’ challenges.

Michael Goggioli, CoE Dry Transformers for Data Centers
Agenda

ABB Group
Product Group Dry-type transformers

Challenges & solutions
- Inrush currents in transformers
- Vacuum circuit breakers and voltage surges
- High temperatures – overloads - lifetime
- Neutral creation
- High voltages

Q&A
Four market-leading entrepreneurial divisions

All businesses in #1 or 2 positions

<table>
<thead>
<tr>
<th>Partner of choice for...</th>
<th>Position</th>
<th>Revenues²</th>
</tr>
</thead>
<tbody>
<tr>
<td>...electrification of all consumption points</td>
<td>#2 in electrification</td>
<td>$9.9 bn</td>
</tr>
<tr>
<td>...robotics and intelligent motion solutions</td>
<td>#1 in motion</td>
<td>$7.9 bn</td>
</tr>
<tr>
<td></td>
<td>#2 in robotics</td>
<td></td>
</tr>
<tr>
<td>...industrial automation</td>
<td>#1 in process control</td>
<td>$6.8 bn</td>
</tr>
<tr>
<td>...a stronger, smarter and greener grid</td>
<td>#1 in T&D</td>
<td>$11.0 bn</td>
</tr>
</tbody>
</table>

²2016 revenues in new structure as of January 2017
Power Grids division organization
Delivering differentiated customer value

Leveraging portfolio and expertise to maximize customer value

- Power and automation products, systems & service solutions across the power value chain
- Global footprint ensures competitiveness and proximity to customers
- Proven track record and unmatched worldwide installed base
- Lifecycle support services
- Unparalleled domain expertise backed by skilled and experienced workforce

Offering solutions through four business units

- Transformers
- High Voltage
- Grid Automation
- Grid Integration
Agenda

ABB Group

Product Group Dry-type transformers

Challenges & solutions

- Inrush currents in transformers
- Vacuum circuit breakers and voltage surges
- High temperatures – overloads – lifetime
- Neutral creation
- High voltages

Q&A
ABB dry-type transformers

Facts and figures

- Revenues: 600 MUSD /year in more than 40 countries
- Annual production capacity around 30,000 MVA from 14 locations
- More than 500,000 units and a field failure rate of less than 1%
- Around 1700 employees in 14 countries
- 6 technology centers worldwide
- ABB has the broadest portfolio of dry-type transformers available in the market
ABB dry-type transformers

Reliable solutions for all applications

<table>
<thead>
<tr>
<th>Solutions for all applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low voltage magnetics</td>
</tr>
<tr>
<td>− Transformers and reactors</td>
</tr>
<tr>
<td>− Up to 1000 V and 10 MVA</td>
</tr>
<tr>
<td>MV magnetics</td>
</tr>
<tr>
<td>− Transformers and iron core</td>
</tr>
<tr>
<td>− Up to 36 kV and 20 MVA</td>
</tr>
<tr>
<td>HV transformers</td>
</tr>
<tr>
<td>− First dry-types for subtransmission</td>
</tr>
<tr>
<td>− Up to 145 kV and 63 MVA</td>
</tr>
<tr>
<td>Sealed/submersible transformers</td>
</tr>
<tr>
<td>− Low maintenance, corrosion resistant</td>
</tr>
<tr>
<td>− Up to 15 kV and 1.5 MVA</td>
</tr>
<tr>
<td>High efficiency transformers</td>
</tr>
<tr>
<td>− Amorphous core technology</td>
</tr>
<tr>
<td>− Up to 36 kV, 100 kVA to 4 MVA</td>
</tr>
<tr>
<td>Converter duty transformers</td>
</tr>
<tr>
<td>− Transformers for rectifiers, exciters and motor VSD’s</td>
</tr>
<tr>
<td>− Up to 36 kV, 10 MVA, and 48 pulse</td>
</tr>
<tr>
<td>Water cooled magnetics</td>
</tr>
<tr>
<td>− Transformers and reactors</td>
</tr>
<tr>
<td>− Internal through conductor or external with heat exchanger</td>
</tr>
<tr>
<td>MV or LV line voltage regulators</td>
</tr>
<tr>
<td>− Protects grid from network voltage variations</td>
</tr>
<tr>
<td>− Up to 36 kV and 30 MVA</td>
</tr>
<tr>
<td>Sealed/submersible transformers</td>
</tr>
<tr>
<td>− Low maintenance, corrosion resistant</td>
</tr>
<tr>
<td>− Up to 15 kV and 1.5 MVA</td>
</tr>
<tr>
<td>High efficiency transformers</td>
</tr>
<tr>
<td>− Amorphous core technology</td>
</tr>
<tr>
<td>− Up to 36 kV, 100 kVA to 4 MVA</td>
</tr>
<tr>
<td>Converter duty transformers</td>
</tr>
<tr>
<td>− Transformers for rectifiers, exciters and motor VSD’s</td>
</tr>
<tr>
<td>− Up to 36 kV, 10 MVA, and 48 pulse</td>
</tr>
<tr>
<td>Water cooled magnetics</td>
</tr>
<tr>
<td>− Transformers and reactors</td>
</tr>
<tr>
<td>− Internal through conductor or external with heat exchanger</td>
</tr>
<tr>
<td>MV or LV line voltage regulators</td>
</tr>
<tr>
<td>− Protects grid from network voltage variations</td>
</tr>
<tr>
<td>− Up to 36 kV and 30 MVA</td>
</tr>
<tr>
<td>Sealed/submersible transformers</td>
</tr>
<tr>
<td>− Low maintenance, corrosion resistant</td>
</tr>
<tr>
<td>− Up to 15 kV and 1.5 MVA</td>
</tr>
<tr>
<td>High efficiency transformers</td>
</tr>
<tr>
<td>− Amorphous core technology</td>
</tr>
<tr>
<td>− Up to 36 kV, 100 kVA to 4 MVA</td>
</tr>
<tr>
<td>Converter duty transformers</td>
</tr>
<tr>
<td>− Transformers for rectifiers, exciters and motor VSD’s</td>
</tr>
<tr>
<td>− Up to 36 kV, 10 MVA, and 48 pulse</td>
</tr>
<tr>
<td>Water cooled magnetics</td>
</tr>
<tr>
<td>− Transformers and reactors</td>
</tr>
<tr>
<td>− Internal through conductor or external with heat exchanger</td>
</tr>
<tr>
<td>MV or LV line voltage regulators</td>
</tr>
<tr>
<td>− Protects grid from network voltage variations</td>
</tr>
<tr>
<td>− Up to 36 kV and 30 MVA</td>
</tr>
<tr>
<td>Sealed/submersible transformers</td>
</tr>
<tr>
<td>− Low maintenance, corrosion resistant</td>
</tr>
<tr>
<td>− Up to 15 kV and 1.5 MVA</td>
</tr>
<tr>
<td>High efficiency transformers</td>
</tr>
<tr>
<td>− Amorphous core technology</td>
</tr>
<tr>
<td>− Up to 36 kV, 100 kVA to 4 MVA</td>
</tr>
<tr>
<td>Converter duty transformers</td>
</tr>
<tr>
<td>− Transformers for rectifiers, exciters and motor VSD’s</td>
</tr>
<tr>
<td>− Up to 36 kV, 10 MVA, and 48 pulse</td>
</tr>
<tr>
<td>Water cooled magnetics</td>
</tr>
<tr>
<td>− Transformers and reactors</td>
</tr>
<tr>
<td>− Internal through conductor or external with heat exchanger</td>
</tr>
<tr>
<td>MV or LV line voltage regulators</td>
</tr>
<tr>
<td>− Protects grid from network voltage variations</td>
</tr>
<tr>
<td>− Up to 36 kV and 30 MVA</td>
</tr>
<tr>
<td>Sealed/submersible transformers</td>
</tr>
<tr>
<td>− Low maintenance, corrosion resistant</td>
</tr>
<tr>
<td>− Up to 15 kV and 1.5 MVA</td>
</tr>
<tr>
<td>High efficiency transformers</td>
</tr>
<tr>
<td>− Amorphous core technology</td>
</tr>
<tr>
<td>− Up to 36 kV, 100 kVA to 4 MVA</td>
</tr>
<tr>
<td>Converter duty transformers</td>
</tr>
<tr>
<td>− Transformers for rectifiers, exciters and motor VSD’s</td>
</tr>
<tr>
<td>− Up to 36 kV, 10 MVA, and 48 pulse</td>
</tr>
<tr>
<td>Water cooled magnetics</td>
</tr>
<tr>
<td>− Transformers and reactors</td>
</tr>
<tr>
<td>− Internal through conductor or external with heat exchanger</td>
</tr>
<tr>
<td>MV or LV line voltage regulators</td>
</tr>
<tr>
<td>− Protects grid from network voltage variations</td>
</tr>
<tr>
<td>− Up to 36 kV and 30 MVA</td>
</tr>
</tbody>
</table>
ABB dry-type transformers

Customized technologies for special needs

<table>
<thead>
<tr>
<th>Vacuum cast coil</th>
<th>Resibloc</th>
<th>Open wound</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Can reach highest voltage class for dry-type transformers (145kV/550kV, BIL)</td>
<td>- Most robust winding technology</td>
<td>- Highest insulation class (220°C)</td>
</tr>
<tr>
<td>- Suitable for corrosive, outdoor environments</td>
<td>- Great for high current or high vibration applications</td>
<td>- Most economical type of transformer</td>
</tr>
<tr>
<td>- Smooth coils for easy cleaning</td>
<td>- Suitable for corrosive, outdoor environments (-60°C)</td>
<td>- Ideal for indoor environments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Requires vacuuming of coils if dirty</td>
</tr>
</tbody>
</table>

Reliable, ecological, safe for people and ambient, maintenance-free
ABB dry-type transformers
Dry-type global producer with focus factories

Global footprint

Insulation technology

<table>
<thead>
<tr>
<th></th>
<th>VCC</th>
<th>Resibloc</th>
<th>VPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Brazil</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Spain</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Bulgaria</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>India</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>S. Korea</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Colombia – only assembly</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egypt - only assembly</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Arabia - only assembly</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABB Group
Product Group Dry-type transformers

Challenges & solutions
- Inrush currents in transformers
- Vacuum circuit breakers and voltage surges
- High temperatures – overloads – lifetime
- Neutral creation
- High voltages

Q&A
When the transformer is first energized, a transient magnetizing (or exciting inrush) may flow in the windings, due to the core magnetizing process. Many factors impact on the duration and magnitude of the current, among which:

- Size of the power system
- Type of core
- Flux density
- Prior history (residual flux)
-

This inrush current, which appears as an internal fault to the differential relays, may reach instantaneous peaks of 8 to 30 times the full load current.
Inrush current is mostly limited by:

- Increasing the reactance of the transformer primary winding (impractical)
 Consequence: unwanted transformer impedance value

- Decreasing the core flux density and saturation point
 Consequence: higher transformer cost
ABB Dry-type Transformers

Solution – Pre-magnetization transformer

From MV side

From LV side

Note:
The pre-mag transformer rating is approx. 0.5~1% rating of the main transformer
ABB Dry-type Transformers

Solution – Pre-magnetization transformer

Typical layout

Advantages
- Cancellation of inrush current
- Compact solution
- Relatively low cost
- Short cable runs

Simple, fast, reliable
Agenda

ABB Group

Product Group Dry-type transformers

Challenges & solutions
- Inrush currents in transformers
- Vacuum circuit breakers and voltage surges
- High temperatures – overloads – lifetime
- Neutral creation
- High voltages

Q&A
Vacuum circuit breakers (VCB’s) have incredible arc-quenching capabilities that bring increased safety and efficiency to electrical systems.

However, VCB (and SF6) switching can produce fast transient overvoltages inside of transformer windings; some leading to failures.

These failures result in system downtime and unrepairable equipment; both incredibly costly to network managers.
ABB dry-type transformers

Investigation - What is actually happening; two types of voltage stress

Voltagess spikes due to pre- or re-strikes in breaker

- Occurs when the voltage potential across the poles of the circuit breaker are still high enough to cause a spark across the terminals
- Chance to occur during every switching event with current

Voltage rise due to resonance amplification

- Occurs when sustained current (ex. short circuit) is interrupted and the wave frequency matches the natural frequency of the windings
- Depends greatly on system characteristics
- Least captured case during lab testing

Each peak is a reignition

Voltage at transformer terminals

![Voltage at transformer terminals chart]

ABB dry-type transformers

Investigation - peak voltage vs. current chopping level

Many variables make peak voltages unpredictable

Test: Full unit, disconnect with variable loading (graph)
– Result: Peak voltages are large and unpredictable

Conclusion:
– It is impossible to predict the max. peak voltage and, therefore, impossible to design a stand alone winding to resist fast switching for all scenarios, no matter the transformer technology
ABB Dry-type Transformers

Solution - Transient Voltage Resistant™ Transformer (TVRT)

ABB’s solution to avoid TVs

The TVRT:

- Varistors are strategically integrated into the transformer windings to enhance the coil technology
- The varistors act as a pressure relief valve, preventing over-voltages inside the coil from growing beyond known levels
- With the peak voltage known, then the internal windings are designed to resist
- This solution works in ALL system configurations because it prevents voltage rise
Advanced solutions; winding varistors

Solution - Worst case switching scenario comparison

<table>
<thead>
<tr>
<th>No protection</th>
<th>RC snubber circuit</th>
<th>Winding varistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta primary, VCC</td>
<td>Delta primary, VCC</td>
<td>Delta primary, VCC</td>
</tr>
<tr>
<td>168 kV peak voltages</td>
<td>250 Hz oscillation, 85 kV peak amplitude</td>
<td>40 – 45 kV (hf transients up to ≈ 65 kV)</td>
</tr>
</tbody>
</table>

BIL of test transformer

Varistor arrangement shows clear reduction in peak voltages AND number of reignitions
Agenda

ABB Group
Product Group Dry-type transformers

Challenges & solutions
- Inrush currents in transformers
- Vacuum circuit breakers and voltage surges
- High temperatures – overloads - lifetime
- Neutral creation
- High voltages

Q&A
ABB Dry-type Transformers

Challenge - High temperatures – overloads - lifetime

Data Center distribution transformers

Design challenges

- **Harmonic currents** present in distribution lines can cause overheating and saturations difficult to quantify, that force to oversize the transformers.
- **Overloading** due to extreme operation conditions can also decrease a standard transformer lifetime if not correctly considered.
- **High ambient** temperatures in summer conditions can create unexpected trips in the distribution line and deteriorate the insulation.
Hi-T Plus - High temperatures

- Insulation suitable for temperatures up to 180 °C and 220 °C as hot spot.
- Suitable for saline atmospheres.
- Vibration proof.
- Design tested up to 250 kV BIL.
- Optional design up to –40 °C.
ABB dry-type transformers

Solution – High Temperature Transformer (Hi-T Plus)

Transformer ageing prevention

Hi-T plus – High temperature insulation system

- Transformer insulation system is suitable for temperatures up to 180°C
 - Suitable for saline atmospheres
 - Vibration proof
 - Design tested up to 550 kV BIL
 - Designs available for operation at -40°C

Transformer characteristics

<table>
<thead>
<tr>
<th>Transformers</th>
<th>Standard</th>
<th>HI-T Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resin characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Insulation class</td>
<td>155°C</td>
<td>180°C ✓</td>
</tr>
<tr>
<td>- Average temperature rise</td>
<td>100 K</td>
<td>125 K ✓</td>
</tr>
<tr>
<td>Transf. characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Full load temperature rise</td>
<td>100 K ✓</td>
<td>100 K ✓</td>
</tr>
<tr>
<td>- Admissible overload</td>
<td>0</td>
<td>25 K ✓</td>
</tr>
<tr>
<td>- Extra power</td>
<td>0</td>
<td>15% ✓</td>
</tr>
<tr>
<td>- Impact on lifetime</td>
<td>0</td>
<td>x8 approx * ✓</td>
</tr>
</tbody>
</table>

Every 6°K that the hot-spot temperature of a transformer is reduced, the insulation’s expected lifetime is doubled – Arrhenius/IEC 60076-12
Agenda

ABB Group
Product Group Dry-type transformers

Challenges & solutions
- Inrush currents in transformers
- Vacuum circuit breakers and voltage surges
- High temperatures – overloads – lifetime
- Neutral creation
- High voltages

Q&A
Generators supplying in delta configuration need an artificial neutral in order to allow limitation of unbalanced currents and of fault currents.

Grounding is generally achieved via a Neutral Grounding Resistor however the Ohmic value of the resistance and its insulation level may have heavy impact on its cost.

Challenge

Generators supplying in delta configuration need an artificial neutral in order to allow limitation of unbalanced currents and of fault currents.

Grounding is generally achieved via a Neutral Grounding Resistor however the Ohmic value of the resistance and its insulation level may have heavy impact on its cost.

Solution

Creates an artificial neutral by using a zigzag or delta-star grounding transformer with a low voltage secondary winding

It can be connected to a suitably rated resistor of which the other terminal is earthed

Reduces the insulation level and Ohmic value of the NGR

Allows monitoring of the currents
ABB Group
Product Group Dry-type transformers

Challenges & solutions
- Inrush currents in transformers
- Vacuum circuit breakers and voltage surges
- High temperatures – overloads – lifetime
- Neutral creation
- High voltages

Q&A
ABB dry-type transformers

Challenge – Safe and ecological substation equipment

Requirements

- Safety for people
 - No flammable materials
 - No pressurized tank
 - Self-extinguishing transformer

- Safety for the environment
 - No oil as main insulation
 - No possibility of oil spillage
 - Low fire load

- Low amount of civil works and maintenance
 - No oil-containment systems
 - No fire-fighting system
 - No oil maintenance
ABB dry-type transformers

Solution – High voltage substation transformer (Hi-Dry)

Design challenges

- Ratings up to 63 MVA
- Voltages up to 145 kV
 (Impulse 550 kV IEC / 450 IEEE)
- 17 positions OLTC on Primary side
- Suitable for indoor or outdoor installation
- Cooling AN, ANAF, AFAF, AFWF
- Partial discharges < 10 pC
Agenda

ABB Group

Product Group Dry-type transformers

Challenges & solutions

- Inrush currents in transformers → Pre-mag transformer
- Vacuum circuit breakers and voltage surges → Transient Voltage Resistant™ Transformer
- High temperatures – overloads – lifetime → Hi-T Plus transformer
- Neutral creation → Earthing transformer
- High voltages → Hi-Dry (145 kV) transformer

Q&A
ABB dry-type transformers

Reasons for choosing ABB

Why ABB dry-type transformers?
With the largest global production and installed base, we are your number one partner for worldwide initiatives

Solutions for any application
From offshore arctic oil platforms, to up-top wind turbine nacelles, to the world's tallest building, we have a custom solution to fit your need

Large portfolio of product
Abilities include a full line of LV magnetics, MV distribution and rectifier duty, and the first for sub-transmission, we are your one-stop-shop for dry-type transformers

<table>
<thead>
<tr>
<th>Safety for people and property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecological and environmentally friendly</td>
</tr>
<tr>
<td>Easy connectivity to any system</td>
</tr>
<tr>
<td>Reliable, high quality, and low maintenance</td>
</tr>
</tbody>
</table>