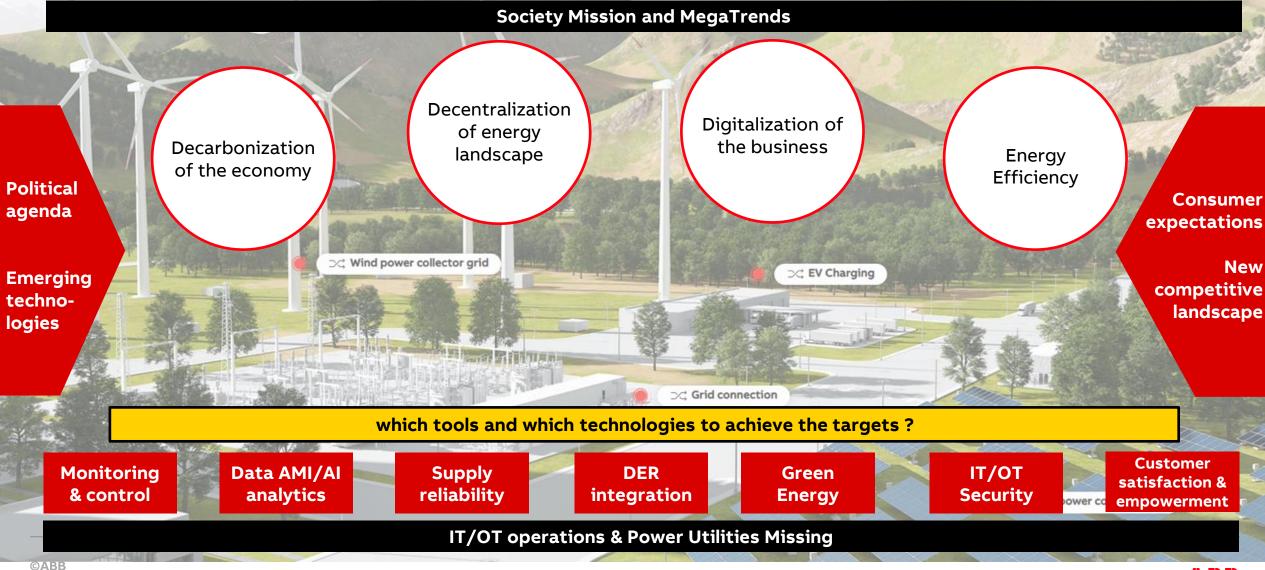


Empowering grid with digital substation

Asia Pacific Technology Forum 2024

June 25-26, 2024 | Bali, Indonesia


Centralized (SSC600)
and Virtualized (SSC600SW)

Marco Nunes, 24.06.2024

ABB, Digital Substation Products

Electrification Division

Introduction Digital Substations deployment – Customer journey

ABB Electrification, Digital Substation Products

ABB Relion portfolio - Protection Relays for Distribution and Subtransmission

Abb Relion portions - Protection Relays for Distribution and Subtransmission																			
	Applications	Fee	eder	Transf	ormer	Mad	chines	Line pro	tection	Busbar	Capacitor	Petersen	Recloser	Arc	PMU	Merging	Station bus	Extra	
ange	/ Platform 605 series	Current REF601	Voltage	2 windings		Motor REM601	Generator	Differential	Distance	differential		Coil		protection		Unit SV	Modbus, 61850 MMS, DNP3, IEC	self-powered REJ601 v1.5 REJ603 v3.0	Electro- mechanical relay
basic rang	REX610 1.1	•	•			•								•			Modbus, 61850 MMS		The Charles Telay
	611 series	REF611	REU611							REB611							Modbus		
range	615 series 5.1	REF615, REC615		RET615		REM615	REG615			REF615	REV615		RER615	•		all types + SMU615	Modbus, IEC103, DNP3 61850 MMS		Public Wireless ARCTIC family
mid rar	620 series 2.0	REF620	REF620	RET620		REM620				REF620			RER620	•		all types	Modbus, IEC103, DNP3 61850 MMS		
<u>C</u>	REX615 6.0	•	•	•		•	•	•		•	•		•	•	2025/ 2026	•	IEC 104, 61850 MMS	2 dimensions: standard + wide	Arc protection
range	630 series 1.3	REF630	REF630	RET630		REM630	REG630										Modbus, IEC103, DNP3 61850 MMS	Load-shedding controller PML630	REA family
h-end	REX640 1.3	•	•	•	•	•	•	•	•	•	•	•	•	•	2025/ 2026	•	Modbus, IEC103, DNP3 61850 MMS	High-speed busbar transfer HSBT	0 = 00 000
hig	ssc600 /sw	•	•	•		•		06-2024	•	•	•		•	•	2025	•	IEC 104, 61850 MMS	Centralized DR, Anomaly detector, SLD webHMI 30 bays protection	Remote IO/RTD RIO600 family
•				- C		APP		PCM600				-		PRODUCT SELEC	TION TOOL HOR (SHEET HE WAY)		ABB		

©ABB Configuration & Engineering tools

ABB Rxplore mobile app available on Android & iOS

GRID EDGE & CLOUD

SSC600

SMU600

SSC600 SW

Product Configuration Tool

fleet mgmtdatalake

- remote updates

- Al Fault analysis

- AI Fault Prediction

Electromechanical - single functions

optimization

Smart substation control and protection SSC600

Introducing Hybrid Protection and Control

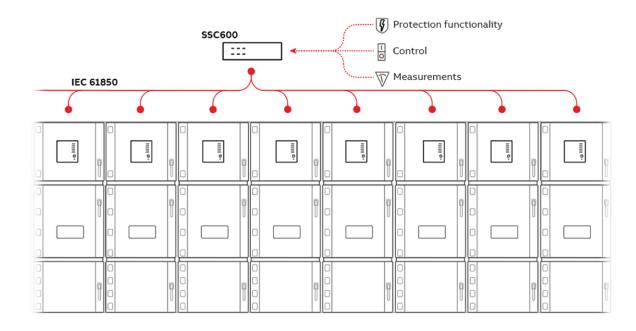
Evolution of protection and control 300-500 Electromechanical relays (single functions) 100 Microprocessor-based, multifunction relays 5 centralized protections SSC600 workstation 1 high-computing server, virtual SSC600 «VPR» virtual relay

machines-hypervisors

Cloud, 5G/6G

Introduction

IEC 61850-compliant centralized protection and control


Customer need

- All settings, configurations and applications centralized in one device
- Dynamically allocate the applications per bay with the possibility to change or adapt at anytime depending on the substation evolution (for instance, a feeder needs to be converted into a transformer bay in a very short time)

Solution

- SSC600 combined with IEC 61850 merging units (MU)
- All settings, configurations and application in one device
- Any capable protection relay suitable as backup time master
- Substation gateway doubles up as human-machine interface (HMI)
- Combined or separated IEC 61850 network for process and station bus
- System visualization using SSC600 and its Web HMI (WHMI)
- Time synchronization via the IEEE 1588 v2 GPS (Global Positioning System) master

Centralized protection SSC600

Standards and communication

Time stamped Sampled values (1 us precision)

1 ms processing cycle on centralized protection vs 2.5/5 ms usually SSC600 has 8 Ethernet ports, incl. PRP/FO SFP

DCC/ADMS

- SSC600 can combine or segregate process bus and station in the communication network.
- Network overload is not a problem, as 30 streams of SMV represent nly 15% network consumption on a 1Gb/s network

IEC61850-8-1 MMS 4 Station bus only needed on IEC60870-5-104 SSC600, with digital substations **Vertical** Process bus between communication MU/Relays and SSC600 Redundant switches GOOSE traffic (binary or analog data transfer) SAV traffic (raw instantaneous voltage/current samples) at 4kHz IMU SMU615 615/620/640 Horizontal communication

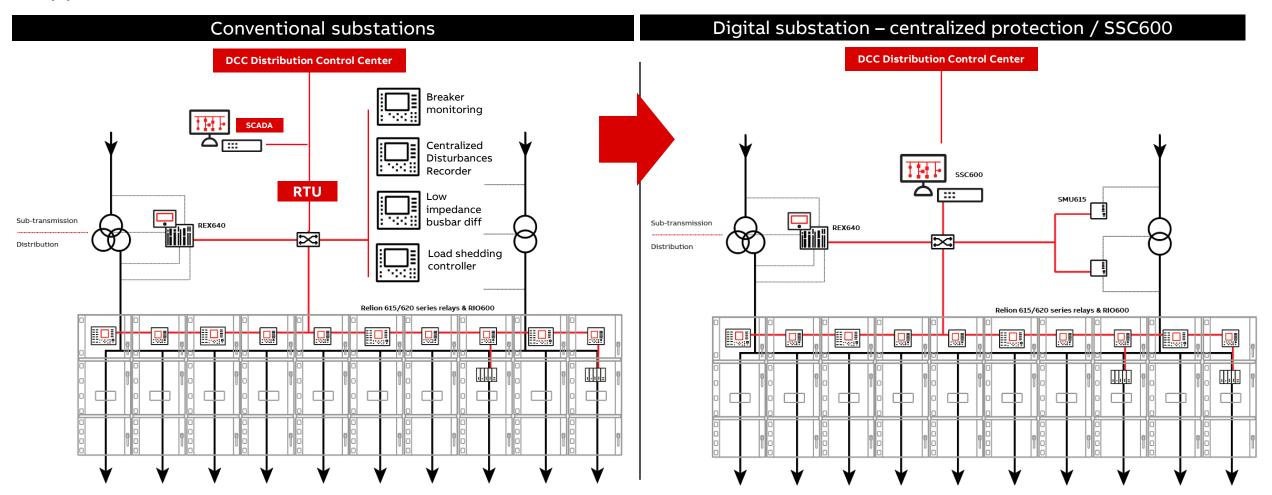
voltage and

transformers

current

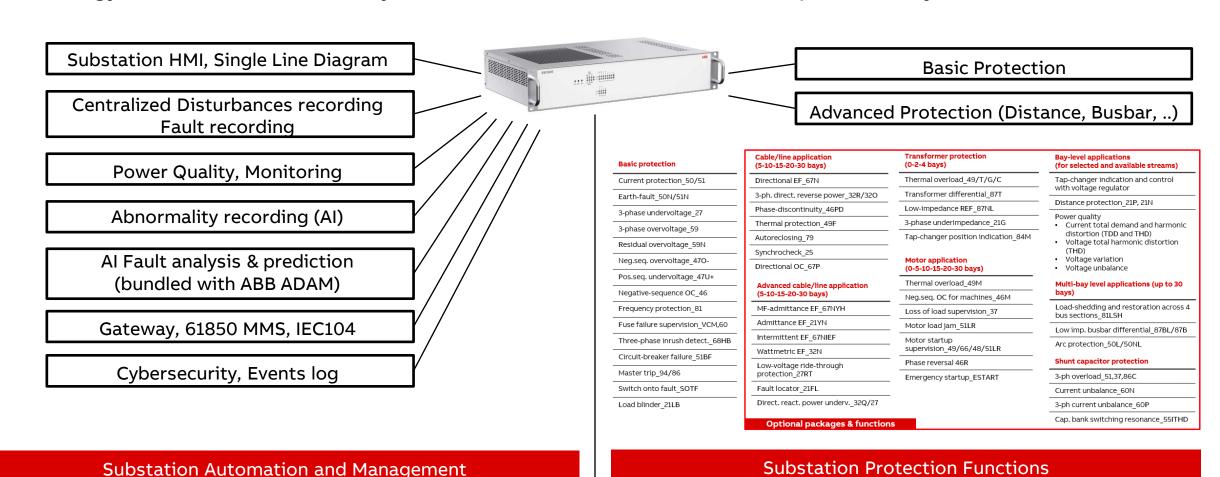
Open standards

- Time synch: IEEE 1588 v2 PTP (in addition to SNTP), according to IEEE
 C37.238-2011 Power Profile for high accuracy time synchronization.
- GOOSE: IEC 61850-8-1 Ed2, tripping type 1A, Class P1 (<=3 ms.)
- Process bus/sampled values: IEC61850-9-2LE
- Disturbances recorder: 60255-24 Comtrade files format
- Redundant communication: PRP as per IEC 62439-3 Edition 1 and 2
- Station bus: 61850 MMS + IEC60870-5-104
- Cybersecurity: ISO 2700x, IEC 62443, IEEE P1686 and IEC62351, NERC CIP and BDEW.
- WebHMI: HTTPS, FTPS, self-signed X.509 certificate, RSA key-pair with key-length of 2048 bits, RFC2617 HTTP Authentication
- EMC/LV: 60255-26 / 60255-1 / EN 60255-27
- Server certifications: CE, FCC, CCC, Electricity IV level for China, IEC-61850 3, IEEE-1613, UL, CB, LVD
- Environment: EU RoHS directive (2011/65/EU).
 - 1) Station bus: IEC61850-8-1, IEC60870-5-104, DNP3 (End 2023)
 - 2) Sampled values, 4 kHz streams: IEC61850-9-2LE or IEC61869-9 (End 2024)
 - 3) Goose messages (analog/binary 500 ms): IEC61850 / GOOSE Trip: max 3 ms

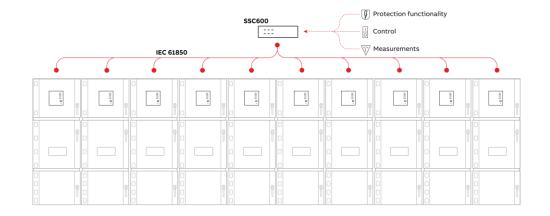

voltage and

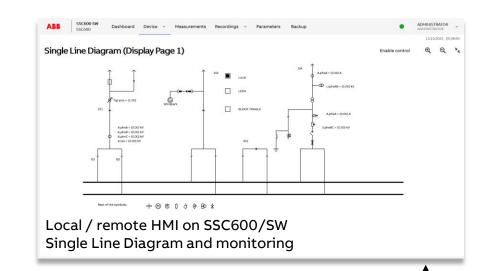
current sensor

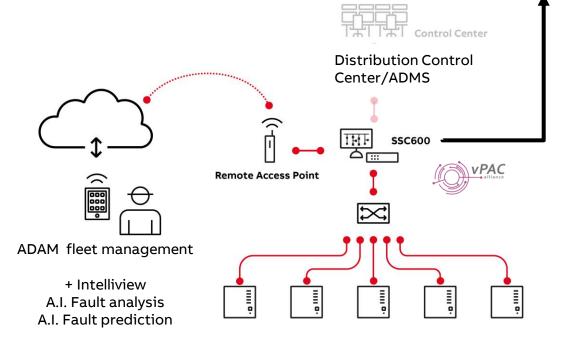
Smart substation control SSC600


Application feature: additional added-value

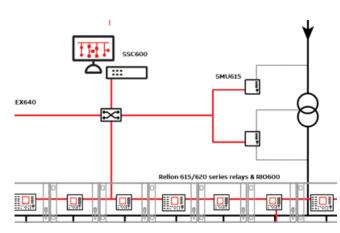
Centralized protection and control with SSC600/SW


Technology CPC (centralized 30 bays) or VPAC/VIED (virtual machines up to 150 bays)


Centralized protection and control with SSC600/SW


Technology CPC (centralized) or VPAC/VIED (virtual machine)

- Protection and control for primary substation
- Station HMI for the entire substation
- Full Protection and Control capabilities for up to 30 bays
- Merging units are the interface to the process
- Centralized Disturbances recording
- Busbar protection (low imp. busbar differential)
- Anomaly recording (AI), enabling Fault Prediction



Protection virtualization technology

ABB Digital Substation: SSC600 CPC Workstation

Centralized Protection and Control (CPC)

- All-in-one turnkey box, with full warranty and support from a single vendor
- The hardware, OS and applications have been type tested all together a turnkey solution
- Safe environment, one single engineering tool
- √ Native development on 61850 standard, and compatible with 61850-9-2LE 3rd party IED's
- Applicables flexibility, including station SLD, centralized recorders, fault recorder
- Hybrid architectures possible, with conventional IED's as bay backup merging units

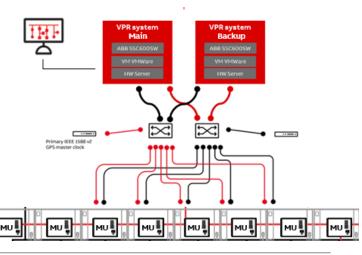
ABB SSC600 workstation

Turnkey Centralized 61850based platform. Intel CPU 4 cores up to 30 bays.

or SSC600 SW VPAC Virtual Machine

Virtualized Protection and Control (VPR)

ABB SSC600 SW as Virtual Machine



Centralized 61850-based platform, running on Virtual Machines. Intel Xeon Gold CPU up to 24 cores up to 150 bays.

- Full scalability in terms of hardware and software
- Multi-vendor integration on same hardware platform
- Remote asset and apps management through VM centralized asset management tools
- Compatible with open-source and commercial vendors for the VM layer (hypervisor), KVM and VMWare
- Allow EPC's and Utilities to utilize always the same components worldwide, and customizing only the apps needed in the VM's/containers

Simplification of assets

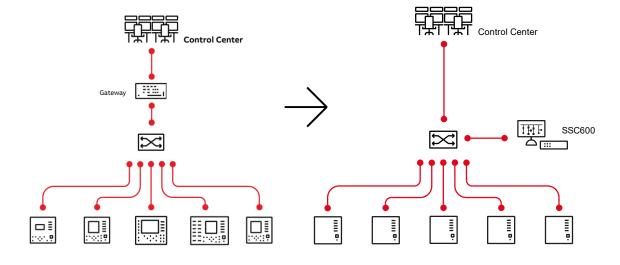
Customer need

Minimize the number of devices in the network for reduced network complexity

Simplify spare device management

Concentrate on 1-2 devices that fit all applications

Solution


615/620 series devices as universal devices with basic backup functions SSC600 as main protection with flexible high-end protection functionality

Reuse of templates with small changes to the main configuration for different substations

No need for additional gateway as IEC 60870-5-104 allows easy and direct connection to an upper-level system such as SCADA

Number of protection device variants reduced when using:

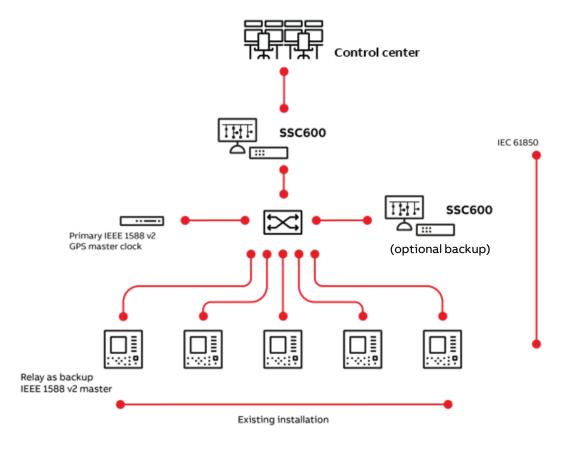
- SSC600 (one variant)
- SMU615 (one variant)

Redundancy of protection functionality via a hybrid installation

Customer need

Redundancy of protection and control functionality Selective and reliable backup protection

Solution


SSC600 added to existing installation as main protection, leaving existing relays and other protection devices as backup protection

Redundant communication with PRP Time synchronization via the IEEE 1588 v2 GPS master or a relay acting as backup time master

Substation gateway doubles up as HMI

Combined or separated IEC 61850 network for the process and station bus

Direct communication to the control center possible with IEC 61850 or IEC 60870-5-104, without an external gateway in between

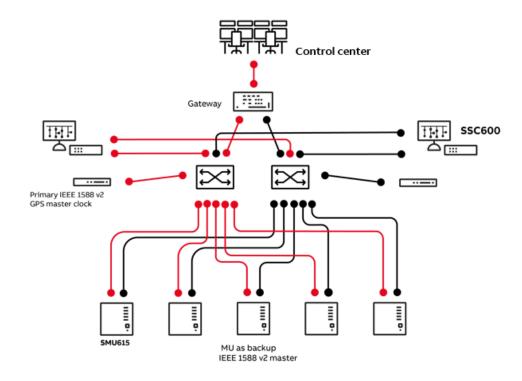
Centralized protection and control with full redundancy

Customer need

Change to centralized protection with a redundant protection scheme

Complete greenfield or retrofit installation

Solution


Two SSC600 devices and one gateway to the SCADA system

- Redundant power supply in SSC600
- Both SSC600 devices in hot-hot redundancy mode
- · Redundant communication with PRP
- Time synchronization via the IEEE 1588 v2 GPS master and backup time master from MU or secondary GPS master

Substation gateway doubles up as HMI

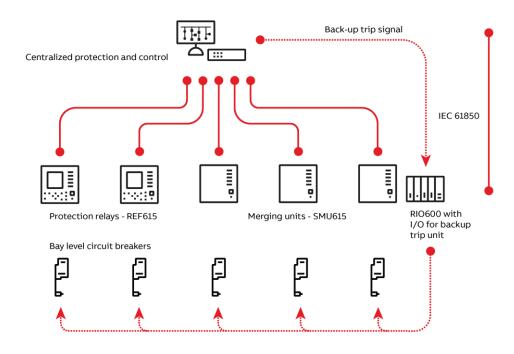
Combined or separated IEC 61850 network for the process and station bus

Direct communication to the control center possible with IEC 61850 or IEC 60870-5-104, without an external gateway in between

Centralized protection with backup trip unit

Customer need

Failsafe redundant backup trip signal in case of relay or MU failure


Solution

SSC600 combined with IEC 61850-capable devices with IEC 61850-9-2LE sending capabilities

SSC600 as main protection with flexible applications

SMU615 or basic REF615 feeder protection relay as backup protection

Remote I/O unit RIO600 added to facilitate backup trip signaling to bay-level circuit breakers

Simplified busbar protection

Customer need

Cost-efficient protection for busbar(s)

Different choices for implementation of busbar protection

Busbar protection without additional hardware

Solution

Arc flash protection

- MUs sense the light whereas SSC600 has the logic for selective tripping
- Easy-to-manage and engineer system with multiple sensors

Busbar differential protection

- Based on the low-impedance differential principle
- No need for extra equipment in addition to SSC600 and MUs
- Up to 30 bays
- 4 protection zones and a check zone
- For single and double busbars

On top of other substation protection, SSC600 can be used for busbar protection

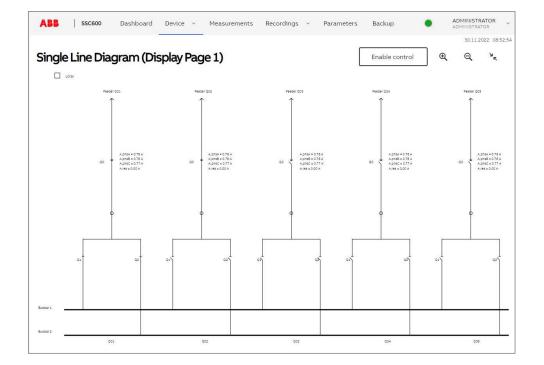
Centralized substation-level HMI

Customer need

Centralized substation-level HMI

- Station-wide process visibility
- Annunciator functionality

Solution


Ability to monitor and control the whole substation via SLDs on the WHMI Easy access to events, fault records, disturbance recordings, settings and measurements

Alarm annunciator functionality with remote I/Os:

- Up to 100 alarm LEDS
- Capability to receive up to 1,600 GOOSE values and use them in logics

Possibility to add ZEE600 for a more comprehensive station HMI

- Full alarm handling with acknowledging
- Busbar coloring
- External logic processing (in addition to SSC600 logics)
- Data historian

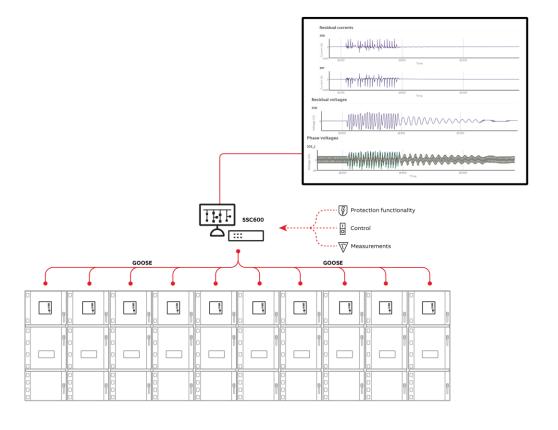
Centralized fault analysis

Customer need

Substation-wide visibility with monitoring of network faults from a centralized point

All substation-related fault data in one place

Solution


Disturbance recordings covering the whole substation

- Recordings of all received IEC 61850-9-2 LE sample streams with 80 samples per cycle (up to 30 streams)
- Recordings of up to 512 Boolean signals
- Storage space for thousands* of COMTRADE files
- Maximum recording length 60 seconds

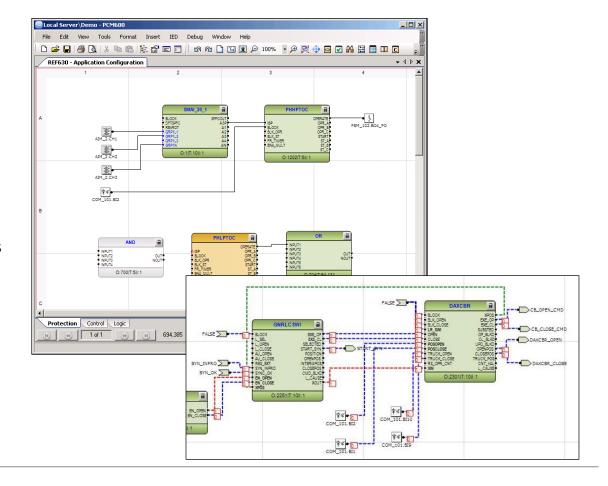
Sequence of events (SOE) for the whole substation

Fault record data of all protection events

Trigger recordings with dedicated anomality detection function

Centralized logics and configuration

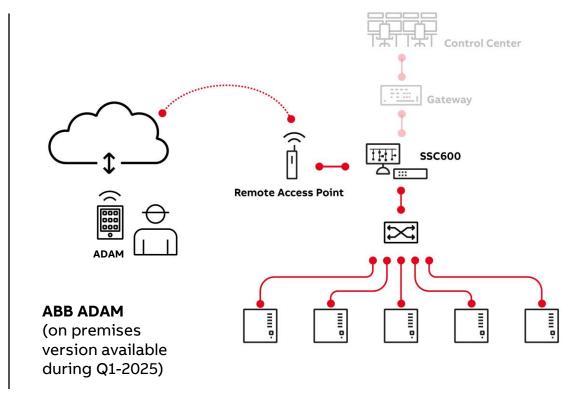
Customer need


Flexibility to customize protection application for specific needs Easy-to-use PLC engineering interface

Possibility to graphically troubleshoot and monitor programmable logics Centralized place for large logics with protection class operation reliability and performance

Solution

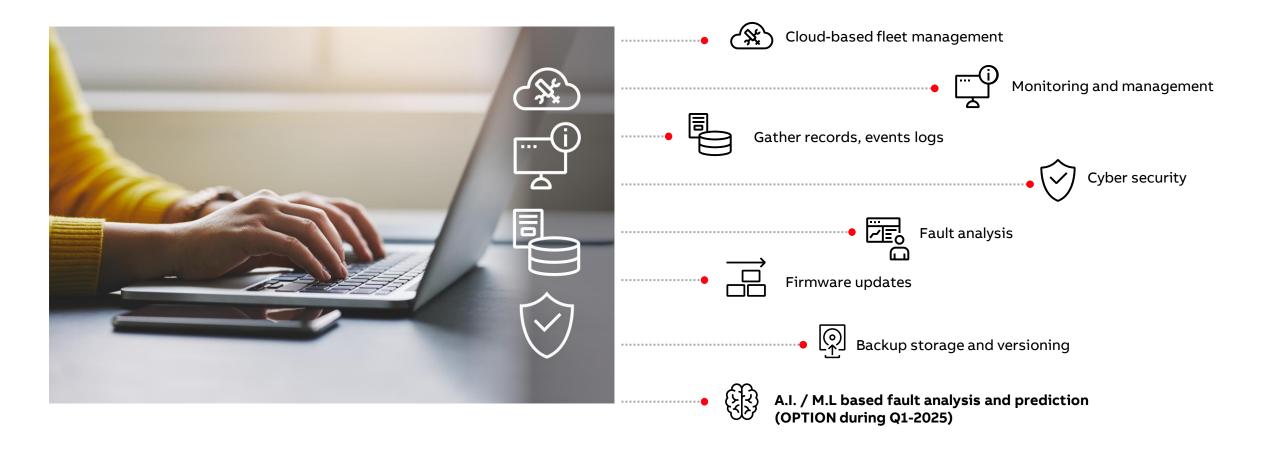
Extensive logical programming functionality with various logic functions Easy-to-use graphical application configuration interface in PCM600 Online monitoring of the complete SSC600 application with PCM600 Ability to receive hundreds of statuses and use them together with thousands of logical gates for highly demanding applications All station-level and bay-to-bay logics done centrally, for instance, interlockings in one single configuration



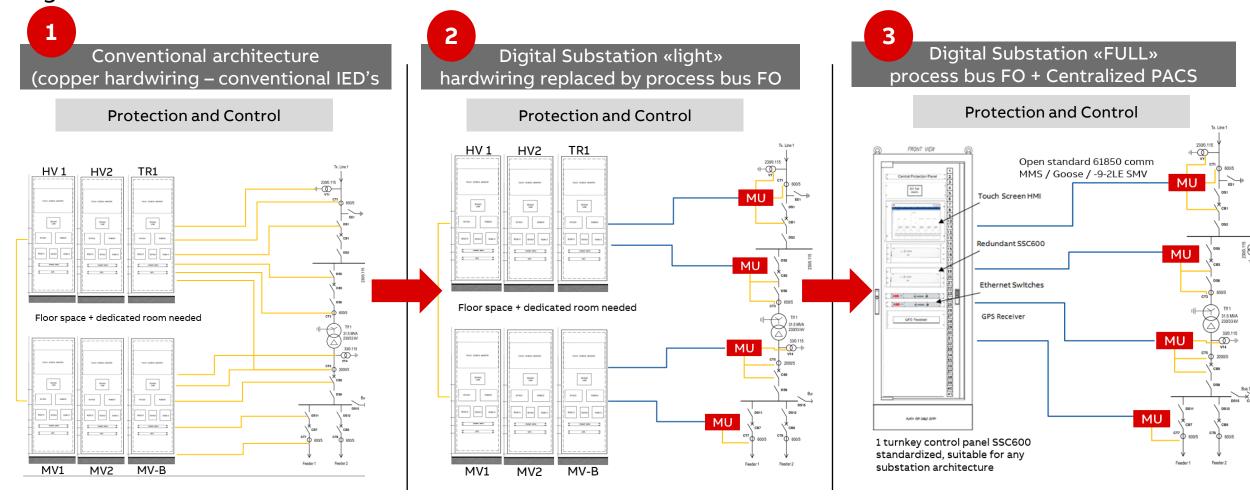
Introduction

ADAM fleet management solution

Cloud environment

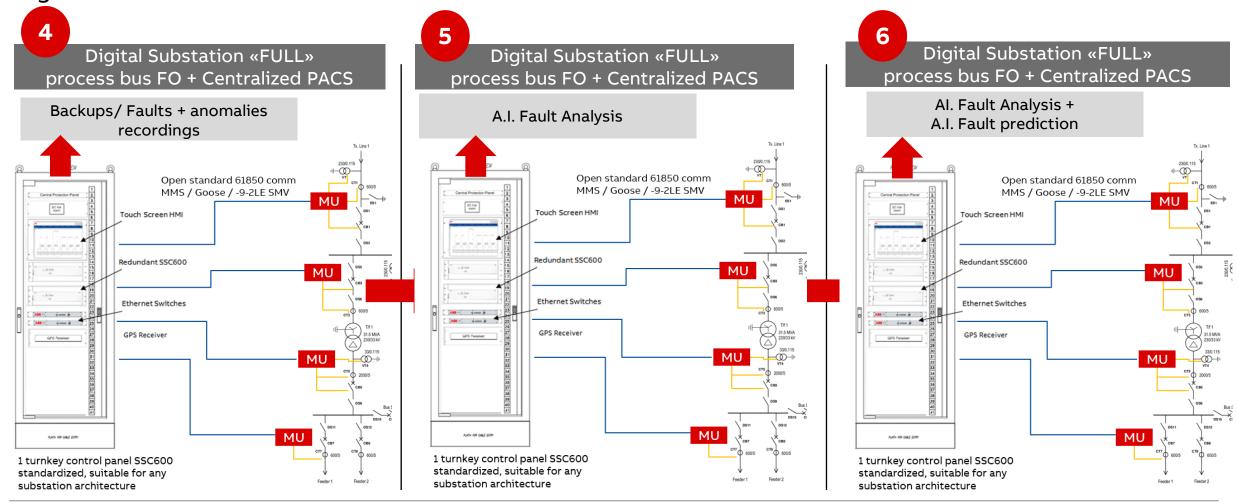

- Solution built around the software- and service-oriented approach to protection and control functionality in power distribution substations
- Added functionality offered by utilizing cloud services
 - Fleet management
 - Remote updates
 - Remote diagnostics
 - Asset management

Introduction


ADAM at a glance

Smart substation control and protection SSC600

Migration from CONVENTIONAL → DIGITAL SUBSTATION

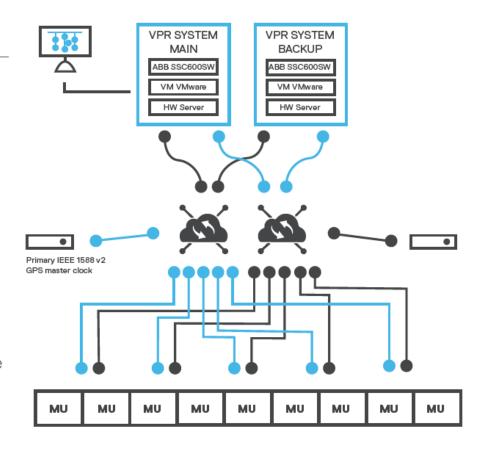

©ABB
June 27, 2024

copper

Slide 23

Smart substation control and protection SSC600

Migration from CONVENTIONAL → DIGITAL SUBSTATION


Slide 24

Smart substation control and protection SSC600

User case: UK Power Network + PNDC

vPAC

- Full scalability of hardware and software
- Multi-vendor integration on the same hardware platform
- Remote asset and apps management through VM centralized asset management tools
- Compatible with open-source and commercial vendors for the VM layer
- Allow EPCs and utilities to utilize the same components worldwide and customize only the apps needed in the VMs/containers

ABB SSC600 as Virtual Machine Centralized 61850-based platform running on virtual machines with Intel® Xeon® Gold CPU up to 24 cores up to 150 bays

In partnership with:

Application packages

SSC600/SSC600SW Feature Pack 4, up to 30 61850-9-2LE streams (30 x 4 currents/4 voltages)

Base functionality (always included)								
Substation management	Basic protection functions							
Functionalities	Basic protection							
Web HMI with station SLD	Current protection_50/51							
Breaker monitoring	Earth-fault_50N/51N							
Measurements_3I/3V/In/Vn/f/	3-phase undervoltage_27							
Fault recorder	3-phase overvoltage_59							
Disturb. recorder (centralized)	Residual overvoltage_59N							
IEC61850-9-2LE SMV receiving	Neg.seq. overvoltage_470-							
IEC61850 GOOSE/	Pos.seq. undervoltage_47U+							
R-GOOSE/MMS	Negative-sequence OC_46							
Advanced logics	Frequency protection_81							
Alarms	Fuse failure supervision_VCM,60							
Events and audit log	Three-phase inrush detect68HB							
PRP redundant communication	Circuit-breakerfailure_51BF							
Redundant power supply	Mastertrip 94/86							
Time synch. with IEEE 1588 v2	Switch onto fault_SOTF							
IEC 60870-5-104								
Anomaly detector ANOGAPC	Load blinder_21LB							

Cable/line application (5-10-15-20-30 bays)	Transformer protection (0-2-4 bays)	Bay-level applications (for selected and available streams)					
Directional EF_67N	Thermal overload_49/T/G/C	Tap-changer indication and control					
3-ph. direct. reverse power_32R/32O	Transformer differential_87T	with voltage regulator					
Phase-discontinuity_46PD	Low-impedance REF_87NL	Distance protection_21P, 21N					
Thermal protection_49F	3-phase underimpedance_21G	 Power quality Current total demand and harmonic distortion (TDD and THD) Voltage total harmonic distortion (THD) Voltage variation Voltage unbalance 					
Autoreclosing_79	Tap-changer position indication_84M						
Synchrocheck_25							
Directional OC_67P	Motor application (0-5-10-15-20-30 bays)						
Advanced cable/line application	Thermal overload_49M	Multi-bay level applications (up to 30					
(5-10-15-20-30 bays)	Neg.seq. OC for machines_46M	bays)					
MF-admittance EF_67NYH	Loss of load supervision_37	Load-shedding and restoration across 4 bus sections_81LSH Low imp. busbar differential_87BL/87B Arc protection_50L/50NL					
Admittance EF_21YN	Motor load jam_51LR						
Intermittent EF_67NIEF	Motor startup						
Wattmetric EF_32N	supervision_49/66/48/51LR						
Low-voltage ride-through	Phase reversal 46R	Shunt capacitor protection					
protection_27RT	Emergency startup_ESTART	3-ph overload_51,37,86C					
Fault locator_21FL		Current unbalance_60N					
Direct. react. power underv32Q/27		3-ph current unbalance_60P					
Optional packages & function	s .	Cap. bank switching resonance_55ITHD					

SSC600 applications and features, available in 3 variants

On the way to intelligent and autonomous networks

Conclusion

Turnkey & flexibility

Reliability

Reduction of assets

Interoperability

Security Remote patching

System savings OPEX/CAPEX

Backups and asset management

Life cycle management

Reduced cabling costs

-90%

Reduction in construction costs of the HV/MV

substation up to

- 1 MUSD

Reduction of operational costs

- 25%

Reduction of engineering costs

-20%

Reduced deployment time for Substation automation systems

50% faster

Total Savings for the Substation Automation System

- 30%

Use of technology
GRID EDGE & AI
for an AUTONOMOUS network

Simplification of standards and Assets

Greater visibility of current and upcoming events

