ABB E-mobility Leading the future to zero-emission mobility

Charles Bringing P

ABB

SEPTEMBER 2023, / ABB E-MOBILITY

The EV Infrastructure, with the right charger

Hiew TW

Product Marketing Director, Electrification Smart Buildings and Smart Power, Indonesia

The e-mobility opportunity

EV infrastructure build-out Driven by global decarbonization and electrification bush

BBBBB

Source: BloombergNEF, Roland Berger | Note:
1. Based on the United States and Europe (Roland Berger assessment) | 2. Vehicle types scope: scope includes light vehicles, trucks, and buses (PHEV for light vehicles); geographic scope: scope includes 18 ABB E-mobility core countries (Belgium, Canada, China, Denmark, Finland, France, Germany, Italy, India, Japan, Luxembourg, Netherlands, Norway, Singapore, Spain, Sweden, UK, USA) | 3. Includes investment into hardware and installation (BloombergNEF economic transition scenario)

Transportation: a major emission source Transportation is accounting for **27%-29% of total** greenhouse gas emissions¹

Increased regulation globally

Societal push towards emission targets accelerating shift to EVs

Lower cost through better technology

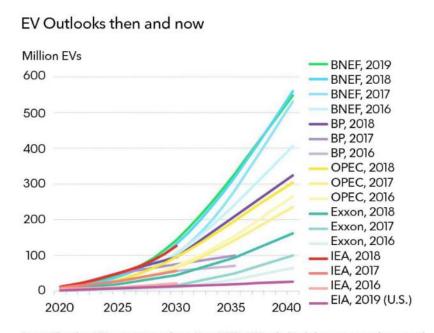
Strong improvements in battery technology and EV infrastructure **increasing EVs competitiveness vs. ICEs in terms of total cost of ownership**

Rising demand for EVs

~130 mn new EVs expected from 2021E to 2030E²

Significant EV infrastructure investments

~\$590 bn investment in **EV charging infrastructure** by 2040E required to meet global emissions targets³

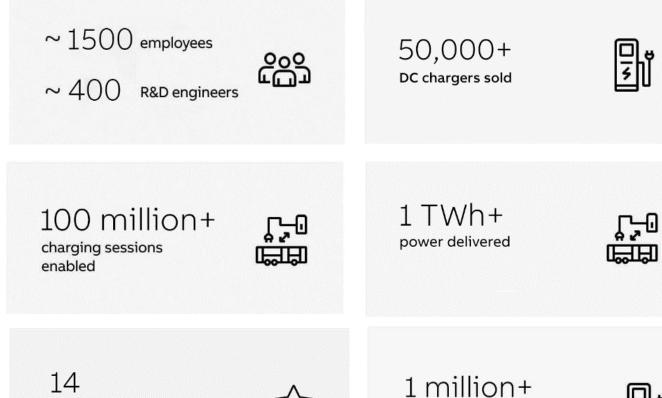

Significant investment need for EV infrastructure expected to create a massive opportunity

Growth of e-mobility market

The e-mobility market is growing at a record pace

Global EV outlook

Source: BloombergNEF, organization websites. Note: BNEF's 2019 outlook includes passenger and commercial EVs. Some values for other outlooks are BNEF estimates based on organization charts, reports and/or data (estimates assume linear growth between known data points). Outlook assumptions and methodologies vary. See organization publications for more.


Drivers for consumers to buy electric vehicles

- Consumers desire to change to electric cars charged by clean, renewable energy
- Electric vehicles are approximately 3X-5X cheaper to charge/fuel
- Electric vehicles have 25% lower maintenance costs than internal combustion engine vehicles
- Electric vehicles can last 2.5X longer than internal combustion engine vehicles
- Costs have decreased as battery costs have decreased

Drivers for companies to support e-mobility

- Attract people to their stores, companies and cities
- To serve their customers, employees, and consumers
- Increase sales as consumers wait for their cars to charge outside
- Environmental stewardship
- New business models for petrochemical industry and store fronts
- To decrease traffic and parking within cities (buses, light rail)

ABB E-mobility A world leader in EV charging solutions

Acquisitions and investments in the e-mobility sector*

AC chargers sold, including via Chargedot



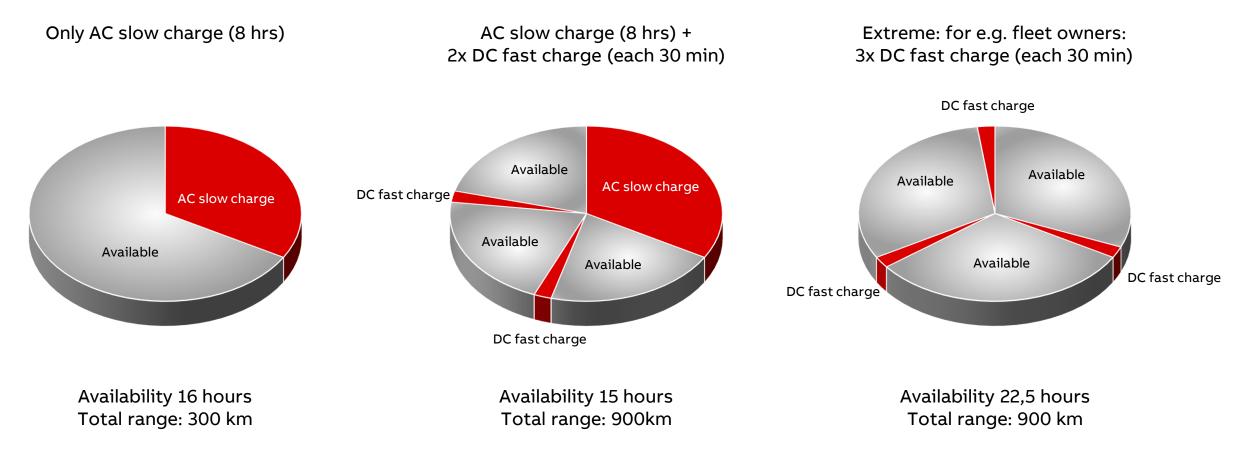
10+ years of technology and innovation leadership

(2011) 2010 - 2011	2012 - 2013	2016 - 2018	2020	2021 -2023
 First EU 50 kW charger (2010) First EVs with DC charging (2010) Acquisition of Epyon 	 Founding of CCS alliance (2012) DC in Estonia, Denmark, Netherlands (2013) 	 First e-bus chargers and partnerships with bus OEMs (2016) First HPC with liquid cooling (2018) 	 Acquisition of charging provider Chargedot Bi-directional charging 	 EV fleet management platform with Amazon Web Services (2021) Acquisition of smart energy control platform Enervalis (2021) Launch of Terra 360 (2021) Acquisition of fleet charging solutions provider InCharge (2022)

EV fast charging and global standardization

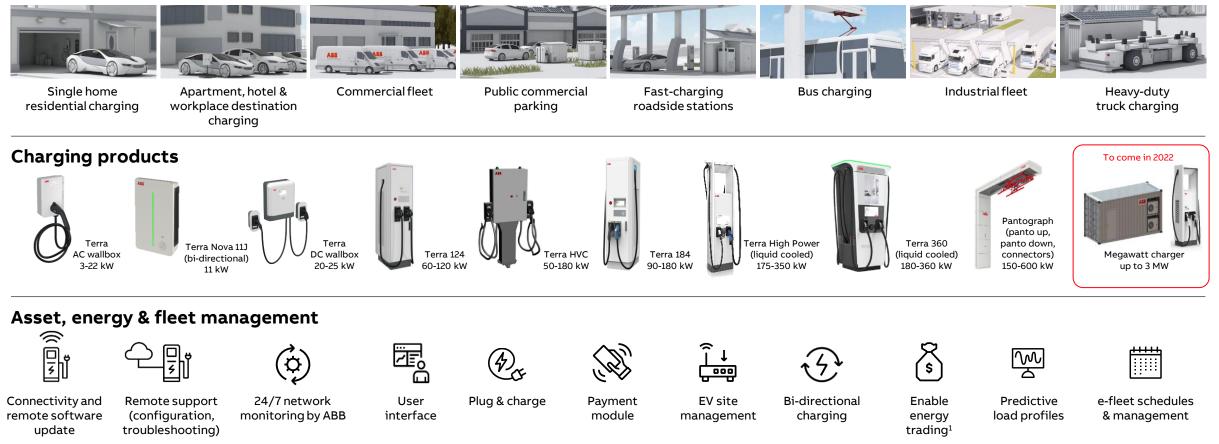
ABB leading in major developments this decade

The right charger a way moving forward


Evolution of EV Charging Infrastructure in Malaysia Charging points

				10-80% Charging					
	AC, kW	DC, kW	Battery Size, kWh	11kW AC	22kW AC	24kW DC	180kW DC	360kW DC	
BMW iX xDrive50	11	195	105.2	7-8 hours	7-8 hours	~2 hours	30-40mins	~30mins	
Mercedez Benz EQS 500	11	207	107.8	7-8 hours	7-8 hours	~2 hours	30-40mins	~30mins	
			·				·		
Tesla Model 3	11	170	57.5	4-5 hours	4-5 hours	~ 1 hour	<30mins	<30mins	
Tesla Model Y	11	170	57.5	4-5 hours	4-5 hours	~ 1 hour	<30mins	<30mins	
Tesla Model 3 Long Range	11	250	75	5-6 hours	5-6 hours	1-2 hours	<30mins	<20mins	
Tesla Model Y Long Range	11	250	75	5-6 hours	5-6 hours	1-2 hours	<30mins	<20mins	
BYD Atto 3	7.4	89	60.5	6-7 hours	6-7 hours	~ 1 hour	40-50mins	40-50mins	
BYD Dolphin Standard	7.4	60	44.9	4-5 hours	4-5 hours	~ 1 hour	40-50mins	40-50mins	
BYD Dolphin Premium	7.4	80	60.5	6-7 hours	6-7 hours	~ 1 hour	40-50mins	40-50mins	
Porsche Taycan Turbo S	11	268	83.7	6-7 hours	6-7 hours	1-2 hours	~30mins	<20mins	
				Est. Value based on data from https://ev-database.org/					

EV Charging Infrastructure development is highly driven by the automotive (BEV) development pace.


Influence on range and availability by AC slow and DC fast charging

Possibility to strongly extend the range of a BEV by DC fast charging

Widest portfolio of EV charging solutions for customers across various use cases

Use case

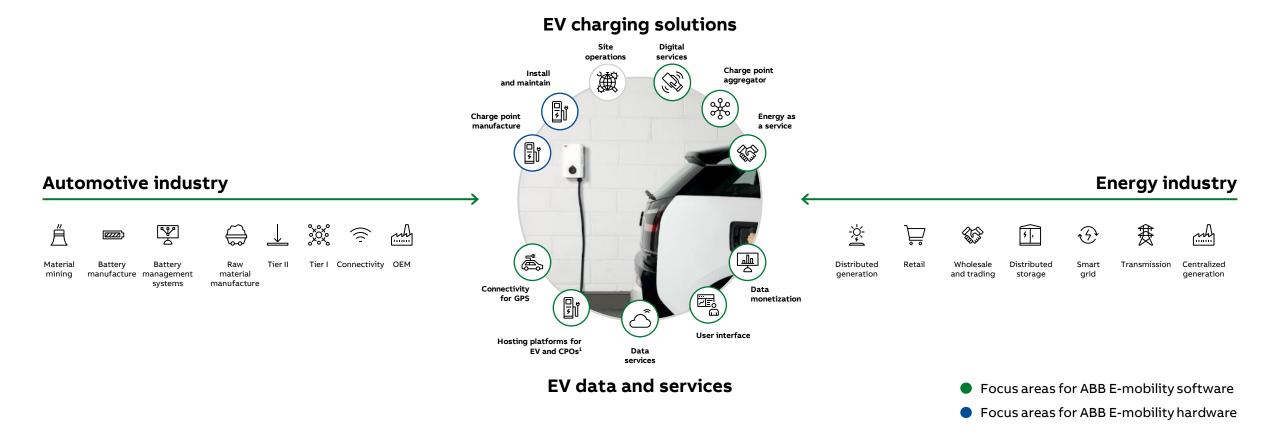
Source: Company information

Note:

1. ABB E-mobility does not engage in energy trading but enables customers to do so

Vertically integrated offering across smart and connected EV charging solutions

AC & DC charging hardware


B2C & B2B digital services

Advanced energy & fleet management

Mission-critical element of EV consumer experience Central role in a complex ecosystem

