I_s-limiter
Is-limiter
Fault Current Limiter (FCL)

Fault current limiter – type 1 (with current interruption)
Fault current limiter – type 2 (without current interruption)

Fault current (without limitation)
Iₘ-limiter
Fault Current Limiter – Commercially available

<table>
<thead>
<tr>
<th></th>
<th>Rated current</th>
<th>Power loss</th>
<th>Voltage drop</th>
<th>Current interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current limiting reactor</td>
<td>≤ 4000 A</td>
<td>high</td>
<td>high</td>
<td>No (type 2)</td>
</tr>
<tr>
<td>Fuse</td>
<td>≤ 200 A</td>
<td>very low</td>
<td>zero</td>
<td>Yes (type 1)</td>
</tr>
<tr>
<td>Iₘ-limiter</td>
<td>≤ 4000 A</td>
<td>very low</td>
<td>zero</td>
<td>Yes (type 1)</td>
</tr>
</tbody>
</table>
Iₜ-limiter – Function
Insert-holder and insert
I_s-limiter – Function
Breaking of a short-circuit current with I_s-limiter

Current curve at the short-circuit location

T_1
$I_k^* = 50$ kA
i_1
$i = i_1 + i_2$
$I_{k,\text{perm.}}^* = 50$ kA

T_2
$I_k^* = 50$ kA
i_2
$I_{k,\text{perm.}}^* = 50$ kA

250 kA
125 kA
50 kA $X \times \sqrt{2}$

$i = i_1 + i_2$

without I_s-limiter

with I_s-limiter

u

i_1

i_2
I_S-limiter

Technical data

<table>
<thead>
<tr>
<th>Rated voltage</th>
<th>Rated current</th>
<th>Switching capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75 kV</td>
<td>... 5000 A</td>
<td>... 140 kA RMS</td>
</tr>
<tr>
<td>12.00 kV</td>
<td>... 4000 A</td>
<td>... 210 kA RMS</td>
</tr>
<tr>
<td>17.50 kV</td>
<td>... 4000 A</td>
<td>... 210 kA RMS</td>
</tr>
<tr>
<td>24.00 kV</td>
<td>... 3000 A</td>
<td>... 140 kA RMS</td>
</tr>
<tr>
<td>36.00 kV</td>
<td>... 2500 A</td>
<td>... 140 kA RMS</td>
</tr>
<tr>
<td>40.50 kV</td>
<td>... 2500 A</td>
<td>... 140 kA RMS</td>
</tr>
</tbody>
</table>

For higher rated currents, I_S-limiter can be connected in parallel.
I_s-limiter – Structure
Typical System Components

3 CT’s
1 Tripping cabinet
3 Inserts holders with inserts
I_s-limiter – Structure
Truck mounted panel

Type tested
- acc. IEC 62271-200

Internal arc classification
- IAC: A FLR
\(I_s \)-limiter – Application Installations

- Petrobras, Shell, BP, Repsol……
- Vale, Toromocho, Minings in Australia
- Aluminium works
- Oil / Gas platforms world-wide
- Refineries world-wide
- Utilities
- Los Alamos National Laboratories / USA
- MIT / Boston USA
- Rolls Royce / Great Britain
- Deutsche Bundesbank (German state bank)
- …
I\textsubscript{s}-limiter – Application
I\textsubscript{s}-limiter mounted in bus section

Advantages:

- Improving „power quality“
- Increasing the reliability of the system
- Reduction of the network-impedance
- Optimal load flow
- Existing busbar system and cabling have not to be changed
Advantages:

- Generator can be connected independent on the short-circuit capability of the system
- Existing busbar and cable systems have not to be changed
- No need of expensive generator breaker
I_s-limiter – Application

I_s-limiter in parallel to reactor

Advantages:

- Avoid copper losses of the reactor
- Avoid voltage drop of the reactor
- No electromagnetical field of the reactor
- Greenhouse aspects (CO_2 and heating)
I_s-limiter – Application
Calculation of savings

Technical Data:
U_r = 13.8 kV, I_r = 4000 A
Reduction:
50 kA to 40 kA
(L = 0.172 mH, P = 42.5 kW/ phase)

Copper losses per year:
42.5 kW * 3 * 24h * 330d = 1.009.800 kWh (I_{service} = 4000 A)
10.625 kW * 3 * 24h * 330d = 252.450 kWh (I_{service} = 2000 A)
I_s-limiter – Application
I_s-limiter with summation of currents

Advantages:
- Only I_s-limiters close to fault location trip
- Existing busbar and cable systems have not to be changed
- Reduction of the network-impedance
- Optimal load flow
- Greenhouse aspects (CO_2 and heating)
Arc fault protection – a matter of time

UFES
Ultra Fast Earthing Switch type UFES
Internal arc test without active protection device

Illustration:
Internal arc test - 50kA / 1s
Fault initiation in CB compartment
Internal arc faults

Impacts

- Circuit breaker compartment after internal arc impact
- Cable connection compartment after internal arc impact
- Contact terminal after internal arc impact
Internal arc faults
Impacts
Arc faults generally cause serious damage
An uncontrolled arc causes

- **Heat**
 - Hot gases, melt drops and thermal radiation may cause damage even farther away

- **Pressure**
 - A rapid temperature rise may lead to a violent explosion

- **Poison**
 - Toxic chemical compounds may be formed at high temperatures, copper busbar vapour

Comments:
CB after internal arc test
Arc fault protection – a matter of time

UFES
ABB offering Arc protection solutions

- **615 series IED with optional arc lenses**
 - Arc protection is integrated into the main protection system and therefore recommended per default to all air-insulated switchgears with single busbar substation layouts.
 - Provides a sophisticated protection solution for applications including distributed power generation where the feeding is coming from many directions.
 - Provides also protection capability which enables selective detection of arcs in the cable end compartment, also in case of earth-faults.
 - In industrial power protection systems the main protection against the arcs can be insufficient due to the multiple protection stages with long operating times.
ABB offering Arc protection solutions

- REA 10_ Arc protection system
 - Targeted to customers for whom short power outages do not cause extremely high negative financial impacts
 - Targeted to customers who desire to keep the arc protection system separate from the main power system protection in retrofit and greenfield investments
 - Safe to install also "in live" switchgears in substations where a power outage is difficult to arrange
 - For applications including two or more main transformers and double busbar substation layouts requiring fast and selective protection, also in case of earth-faults
ABB offering Arc protection solutions

- **UFES (Ultra Fast Earthing Switch) with REA arc protection system**
 - Targeted to customers for whom arc faults can cause extremely high negative financial impacts
 - Targeted to customers who are retrofitting their protection system or installing new equipment requiring highest possible protection for switchgear in regard to the hazardous impacts caused by an internal arc
 - Specially suitable for marine customers
 - In industry greenfield investments savings are possible in cabling costs due to the fact that the switchgear can be located near to the power consumption point
ABB offering
Comparison of different solutions

<table>
<thead>
<tr>
<th></th>
<th>Protection time</th>
<th>Switching time</th>
<th>Selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>No arc protection</td>
<td>~300ms</td>
<td>~50ms</td>
<td>No</td>
</tr>
<tr>
<td>615 Series</td>
<td>~10ms</td>
<td>~50ms</td>
<td>Yes</td>
</tr>
<tr>
<td>REA10_ system</td>
<td>~2ms</td>
<td>~50ms</td>
<td>Yes</td>
</tr>
<tr>
<td>REA10_ system + UFES</td>
<td>~2ms</td>
<td>~2ms</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Ultra Fast Earthing Switch type UFES
New active internal arc protection by ABB
Ultra Fast Earthing Switch type UFES
Primary switching element

Position after tripping

Service position

Ø 137 mm
Max. weight ~ 5,5 kg

Vacuum device

Moving direction

Current flow after tripping

Drive
Ultra-Fast Earthing Switch type UFES
Sequence of tripping operation

1. Arc formation
2. Arc detection
3. PSE tripping
4. Arc extinction
5. Fault current clearing

Optical sensor \(I_k^* \) Current detection unit UFES Primary switching element (PSE)
Ultra Fast Earthing Switch type UFES S^3 - Comparison
Ultra Fast Earthing Switch type UFES
S^3 - Comparison
The new Ultra Fast Earthing Switch type UFES
Arrangement of the components
Ultra-Fast Earthing Switch type UFES
Applicable for highest requirements

Maximum rated voltage:
\[U_r = 40.5 \text{ kV} \rightarrow I_k = 40 \text{ kA (3s)} \]

Maximum rated short-time withstand current for medium voltage:
\[I_k = 50 \text{ kA (3s), 63 kA (1s)} \rightarrow U_r = 17.5 \text{ kV} \]

Maximum rated short-time withstand current for low voltage:
\[I_k = 100 \text{ kA (0.5s)} \rightarrow U_r = 1.4 \text{ kV} \]
Ultra-Fast Earthing Switch type UFES
Available as … loose components

Standard: **UFES-Kit-100*** as OEM product, consisting of:

- Electronic tripping unit type QRU100
- 1 set (3 off) Tripping cables (10 m) with special plug for PSE and electronic
- 3 Primary switching elements (PSE)

* For extension of existing or new arc protection systems. Full compatibility to the ABB arc protection system type REA.
Ultra Fast Earthing Switch type UFES
Available as … ABB Service retrofit solution
Ultra Fast Earthing Switch type UFES
Available for … ABB switchgear (AIS)

UFES in UniGear – Top-Box installation

UFES in UniGear - Installation in cable compartment
Ultra Fast Earthing Switch type UFES S³ - Unbeatable advantages

Indirect benefit

- Greatly increased system and process availability by avoidance of heavy damages inside the switchgear, of the equipment and the direct environment
- Drastic reduction of downtimes and repair costs

Example for a production site (e.g. chemical-, paper- or oil industry)

- Risks: Exchange of damaged switchgear panel(s) or equipment necessary
- Consequence: Loss of production for possibly some days or weeks
- Costs: Up to multiple 100,000 EUR / hour possible
Ultra Fast Earthing Switch type UFES
S^3 - Unbeatable advantages

Direct benefit

- Greatly increased operator safety for switchgears
- Minimization of pressure rise and gases in the faulty compartment and surrounding switchgear building
Ultra-Fast Earthing Switch type UFES
UFES = S³

Are you attracted by the UFES?

Please contact…
ufes@de.abb.com
Power and productivity for a better world™
Application
I_S-limiter with summation of currents
Application

I_s-limiter with summation of currents

```
25kA

13kA

13kA

13kA

3kA

3kA

13kA

46kA

3kA

M

VFD

VFD

M
```
I₅-limiter + UFES/REA

Protection on the highest possible level

Fast splitting of the systems with the I₅-limiter
- Short circuit limitation before the first currents rise (0,6ms after detection)

Arc protection by the UFES system
- Ultra fast extinguished of the arc (< 4ms after detection)