Power Quality
Voltage Stabilisation for Industrial Grids and Wind Farms with STATCOM
The aim of this presentation is to give:

- An understanding of the voltage stabilisation principle.
- An overview of the power quality technologies available and some guidelines for choosing between them
- Presentation of ABB’s PCS 6000 STATCOM
- Voltage stabilisation examples in different industrial applications
APPARENT POWER
(Beer = Full glass)
Electricity = Available from utility

REACTIVE POWER
(Beer = Foam)
Electricity = Unable to do work
PARASITIC electrical power, caused by components such as transformers, motors (inductive) or cables capacitive) for what the system has to be designed and which has to be paid to the utility

REAL POWER
(Beer = Drinkable)
Electricity = Able to do work
STATCOM Systems
Problems Encountered

- Large loads consume huge amounts of power and cause an excessive voltage drop which at the extreme becomes a complete collapse of the voltage
- In the other direction load shedding of a capacitive line or heavily compensated line can cause over voltages
- Switching of loads or power factor capacitors causes steps in voltage (inrush current factor 5…9 of rated power) which can cause tripping of Motors
- Rapidly varying loads or pulsing (choppering) cause voltage flickers
- Industrial grids (plants) with many different participants (loads) have network specific harmonics
Voltage Stabilisation = Supporting the grid voltage with reactive power

- **Increase** of the grid voltage by injecting reactive power to the grid over-excited behavior of the FACTS capacitive (inductive grid)

- **Reduction** of the grid voltage by absorbing reactive power from the grid under-excited behavior of the FACTS inductive (capacitive grid)
Each voltage drop/swell of U_{Grid} causes an inherent, immediate reactive current over the transformer which works against the disturbance.

Reactive power injection after STATCOM voltage increase (U_{Comp}) starting within <10ms.
STATCOM Systems
Introduction – FACTS devices

- Fixed passive component (Cap.)
- SVC
- STATCOM
- STATCOM with fixed passive (Cap.)
- STATCOM with mechanically switched passive (MSR)
Switched Capacitors / Reactors

- Inexpensive

- Switching not synchronised with waveform:
 - inrush = transients = network stress

- Limited by response time of switchgear
 - (>70ms)

- Need to be discharged between operations

- Not Suitable for continuously varying load
 - requiring frequent switching (steady state)

- Fixed steps cause new harmonics, filters required

- V^2 characteristic: Voltage steps get bigger as line limit is reached and smaller just when you need it most
Static VAR Compensators (SVC)

- Fast response (20-30ms)
- Continuous control – No steps
- Inductive as well as capacitive
- Economies of scale with large systems
- Generates harmonics. – Care required in design
- V^2 characteristic
Synchronous Condenser

✓ Immediate response (<10ms)
✓ Continuous control. – No steps
✓ Inductive as well as capacitive
✓ Provides inertia (spinning reserve = active power)
✓ Cheap active power storage (compared with BESS)
 ✗ Constantly high losses (~5%)
 ✗ Expensive in operation (Rotating machine requires higher maintenance)
STATCOM

- Ultra dynamic response (<10ms)
- No steps
- Ind. + cap. capabilities
- Constant current characteristic. – VAR’s fall with V – not V^2
- Low harmonics no filters required
- Integrated AHF (Active Harmonic Filtering)
- Cheaper than SVC below
 ≈ 50MVAR
- Suited to a hybrid solution of
 STATCOM plus switched capacitors
FACTS Comparison

<table>
<thead>
<tr>
<th></th>
<th>Speed of response</th>
<th>Repeated operation possible</th>
<th>Steps</th>
<th>“Inductive” control</th>
<th>Inertia (active power)</th>
<th>Cost CAPEX / OPEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switched capacitors (reactors)</td>
<td>Slow</td>
<td>Discharge time and wear of switchgear</td>
<td>Fixed</td>
<td>No</td>
<td>No</td>
<td>Low</td>
</tr>
<tr>
<td>Thyristor switched capacitors</td>
<td>Fast</td>
<td>Yes</td>
<td>Fixed</td>
<td>No</td>
<td>No</td>
<td>Medium</td>
</tr>
<tr>
<td>SVC</td>
<td>Fast</td>
<td>Continuous</td>
<td>Continuous</td>
<td>Yes</td>
<td>No</td>
<td>Cheaper than STATCOM for large systems</td>
</tr>
<tr>
<td>Synchronous condenser</td>
<td>Fast</td>
<td>Continuous</td>
<td>Continuous</td>
<td>Yes</td>
<td>Yes</td>
<td>High OPEX, bad MTTR, permanent losses</td>
</tr>
<tr>
<td>STATCOM</td>
<td>Fast</td>
<td>Continuous</td>
<td>Continuous</td>
<td>Yes</td>
<td>Possible with added energy storage</td>
<td>High CAPEX if no hybrid solution</td>
</tr>
</tbody>
</table>

© ABB Group
October 23, 2012 | Slide 24
STATCOM
In Summary

- A STATCOM is used where traditional solutions won’t work
 - Able to autonomously control the voltage resulting in a much faster power factor correction
 - Continuously variable output without steps, no harmonics, no transients
 - Can generate and absorb reactive power.
 - Amount linear to voltage.
 - Reacts practically instantaneously. Reaction starts <10ms after event, full power result in 20-50ms.
 - Is always in “hot stand-by”, power losses <1%
- Will work on a system near the stability limit
ABB STATCOM Products

Power MVAr

- PC 100
- PCS 6000
- SVC Light

Grid Focus

Plant Focus
ABB STATCOM Products

POWER MVAr

1 10 100 1000

Industrial Grids
e.g. Mines, Wind Farms

PCS 6000

PCS 100

SVC Light
ABB STATCOM Products

Applications

Renewables
- Reactive power capability and fault ride through for wind farms

Industrial
- Compensation of starting current for large motors
- Compensation of unbalanced loads
- Power factor improvement
- Flicker control of fluctuating loads like arc furnaces, shredders, spot welders, saw mills etc.
- Active harmonic filtering

Utilities
- Compensation of weak transmission lines to remote areas
- Compensation of unbalanced loads
- Improve power transmission capability of transmission lines
PCS 6000 STATCOM
Outdoor Installation for 15…34MVAr
PCS 6000 STATCOM
Definition of a STATCOM System

- PCS 6000 STATCOM in an IP54 outdoor container or indoor installation:
 - Voltage source converter (VSC),
 - Local Control via GUI (standard: remote control)
 - Uninterruptable power supply (UPS for Control),
 - Complete Water-cooling system with piping and 100% redundant pumps
 - Pre-charging unit (soft-start = no inrush current)
- Step-up transformer with busbar connections (between the STATCOM and the transformer) and dv/dt filters

Unit Size:
12MVAR - 34MVAR

System Rating:
12MVAR - 100MVAR

POC:
10-145kV

Installation:
Indoor IP00
Outdoor IP54
PCS 6000 STATCOM
Installation in IP54 Outdoor Container
PCS 6000 STATCOM
Converter IP00 Indoors

- Converter indoors
- Controls and cooling unit indoors
- Transformer outdoors
- Water / Air heat exchanger outdoors
- Ideal for bigger systems / extremely polluted environment
PCS 6000 STATCOM

Cooling System

- Closed loop cooling system with de-ionized water / glycol
- Two options available for external cooling
 - Industrial raw water circuit for extreme conditions
 - External heat exchanger with fans
- 100% redundant pumps
- External heat exchanger (water-air) and piping included
ABB MV Converter Technology
Field Proven IGCT Platform

PCS 6000 Wind
Frequency converter for application in wind turbines
> 700 MVA delivered

PCS 6000 STATCOM
Frequency converter for reactive power control
> 500 MVA delivered

PCS 6000 Rail
Frequency converter to connect railway with regular grid
> 1000 MVA delivered

PCS 8000
Frequency converter for Pumped storage power plants
ACX Avce, Seebach 2x, Massaboden
XLD 100 MVA Grimsel 2

ACS 6000 MV Drive
Frequency converter to drive an electrical motor
> 13’000 MVA delivered
PCS 6000 Converter Family Design Philosophy:

- Use redundant components, where reliability is limited (fans)
- Use of least possible amount of components that are maximum reliable (best MTBF)
- Keep access to components simple (fast exchange, best MTTR)
- Ideal for remote area operation due to maximum remote control as used in offshore wind converters
PCS 6000 STATCOM
Voltage Source Converter (VSC)

- IGCT (Integrated Gate Commutated Thyristor)
 - Switch, which can be turned on and off by a fibre optic signal, good control capabilities (“first failure”)
 - Very low conducting losses → slow switching possible to avoid transients (drawback of IGBT)
- Robust design
 - Very good balance between robustness, efficiency, cost and reliability for medium voltage converters
PCS 6000 STATCOM
Transformer Connection

- Double twin topology
- Both secondary winding ends are brought out and connected to one converter terminal
- Two secondary windings are coupled to form the voltage on the primary side
- Advantage: virtually 17 output voltage levels
PCS 6000 STATCOM
Double Twin Topology

- Transformer secondary winding voltage (5 levels)
- Due to double-twin topology, the transformer primary winding has then virtually 17 voltage levels.
PCS 6000 STATCOM
Case Study 1: Westermost Rough Offshore Wind Farm
Case Study 1: Westermost Rough WF

- **Area**: 35 km²
- **Capacity**: 180 - 240 MW
- **Turbine Rating**: 3 - 7 MW
- **Cable Landing**: Tunstall
- **Onshore Substation**: New Hedon
- **Water Depths**: 12 – 28 m LAT
- **Construction**: 2014

Indicative turbine lay-out
Case Study 1:
Westermost Rough WF

- **Addition of a STATCOM System**
 - Ensures AC Windfarm grid interconnections
 - Ensures Grid Code requirements

![Diagram of STATCOM system](image)
Case Study 1: Westermost Rough WF

Requirement «GRID COMPLIANCE»:

- Power Factor Correction of WF + long cables (steady state conditions)
 50MVAr MSR + 0..50MVAr STATCOM

- UK Grid Code Requirements (Voltage Stabilisation, FRT, Harmonics,)

- Main Supply:
 2x 25MVAr PCS 6000 STATCOM in container + 50MVAr MSR; Switch gear, aux. power, X-formers, cables; Turnkey
Case Study 1: Westermost Rough WF

Main Supply: 2x 25MVAr PCS 6000 STATCOM in container + 50MVAr MSR; Switch gear, aux power, X-formers, cables. Turnkey
PCS 6000 STATCOM
Case Study 2: Voltage Stability in Industrial Plant
Case Study 2: Voltage Stability in Industrial Plant
Case Study 2: Voltage Stability in Industrial Plant

Requirement «Voltage Stability»:
- Remote and weak grid conditions in Kazakhstan
- 3 Gearless Mill Drives at one bus bar

Generalized STATCOM performance:
Immediate inherent reaction providing
- 80% of rated current within 20ms (not controlled).
- 100% of rated current within 60ms (controlled).

- Main Supply:
 1x 32MVAr PCS 6000 STATCOM System in container, cooling, X-formers
Case Study 2: Voltage Stability in Industrial Plant

Scope of Supply:
PCS 6000 STATCOM System 1x32MVAr in container
Transformers, Busbars, dv/dt Filter, HEX
+ Delivery, Unloading, Installation, Commissioning, Spare Parts

No cables to SG, no civil works
STATCOM Systems

Outlook

- ABB has expertise for complete interconnections in Industrial Networks
 - Inhouse system components knowledge (switchgear, transformers, SCADA, ...) due to ABB’s vast offerings
 - Inhouse understanding of best solution due to knowledge STATCOM systems to meet Grid Code requirements
 - Complete SVC plants for AC grid interconnections
 - Grid integration analysis and study capabilities
 - Reference projects for Grid Compliance, Voltage Stability, Flicker Compensation, Various Control Philosophies

- Thank you for your attention and questions!