
FAHD HASHIESH

Power Quality

ABB

Power Quality – Does it exist?

P Z A S W J S H U E X N D H Z
T F Q K I L J N Q D A X V A G
R S F Q L W B D R O F H J R S
N G X E X A M X E C N S S M U
N R W T L Y V L W D H M O O O
E S H A R L W F O I S N Z N X
O M N A L A E L P R X N A I U
J C I Z K T N N E G U H E C H
E N H T Y S J S V Q K G E S Z
D R C S N B S E I T L A N E P
C W S X A W R B T E P Z J J V
D M J Y X G O F C D N Y E V L
S U R G E S S D A X W T F E L
F P B R W S R J E S W M S G L
R K U W P O W E R F A C T O R

Is it easy now?

P Z A S W J S H U E X N D H Z
T F Q K I L J N Q D A X V A G
R S F Q L W B D R O F H J R S
N G X E X A M X E C N S S M U
N R W T L Y V L W D H M O O O
E S H A R L W F O I S N Z N X
O M N A L A E L P R X N A I U
J C I Z K T N N E G U H E C H
E N H T Y S J S V Q K G E S Z
D R C S N B S E I T L A N E P
C W S X A W R B T E P Z J J V
D M J Y X G O F C D N Y E V L
S U R G E S S D A X W T F E L
F P B R W S R J E S W M S G L
R K U W P O W E R F A C T O R

SAGS

SWELLS

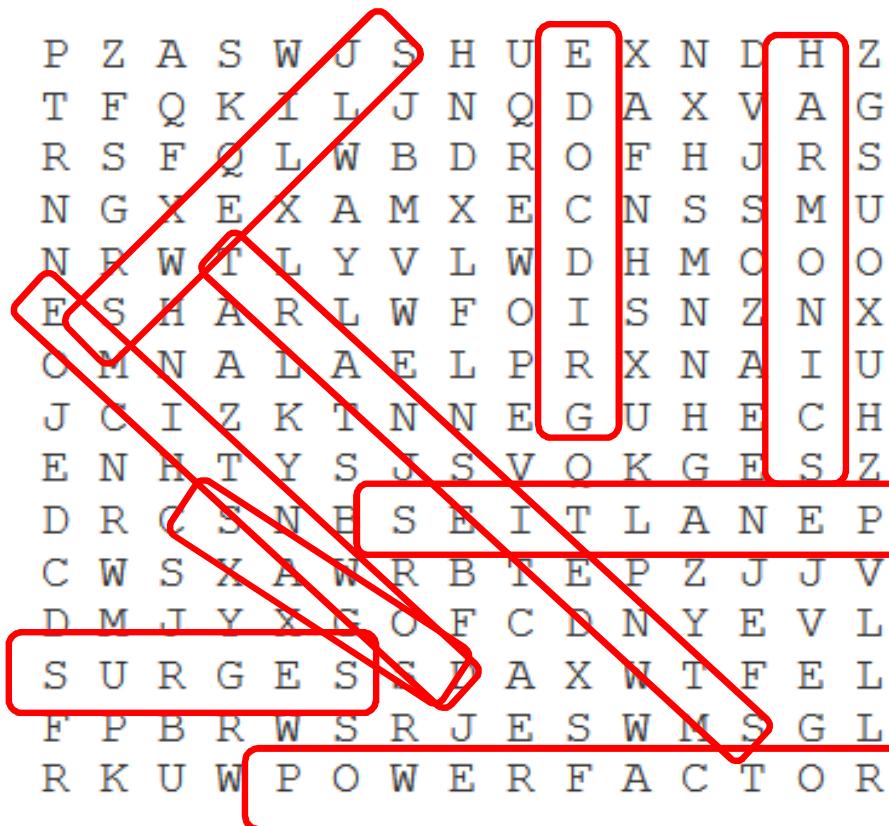
HARMONICS

Reactive Power

SURGES

POWER FACTOR

DOWNTIME


GRID CODE

TRANSIENTS

UNBALANCE

PENALTIES

Find out Key words?

SAGS

SWELLS

HARMONICS

Reactive Power

SURGES

POWER FACTOR

DOWNTIME

GRID CODE

TRANSIENTS

UNBALANCE

PENALTIES

Power Quality

Consequences of poor power quality

1 Wind power generation

Not able to connect to the grid in case of overvoltage or undervoltage or if pollution emitted is too high

2 Marine

Non-compliance, not allowed to connect to grid, increase in running costs, frequent outages and downtime

3 Industry

Non-compliance to grid codes, not allowed to connect to grid, penalties, lower productivity, potentially higher CO₂ emissions

4 Conventional power generation

Higher stress on generators leading to premature failure/erratic behavior, higher running costs

5 Power distribution

Not able to connect to the grid – in case of overvoltage or undervoltage or if pollution emitted is too high

6 Solar power generation

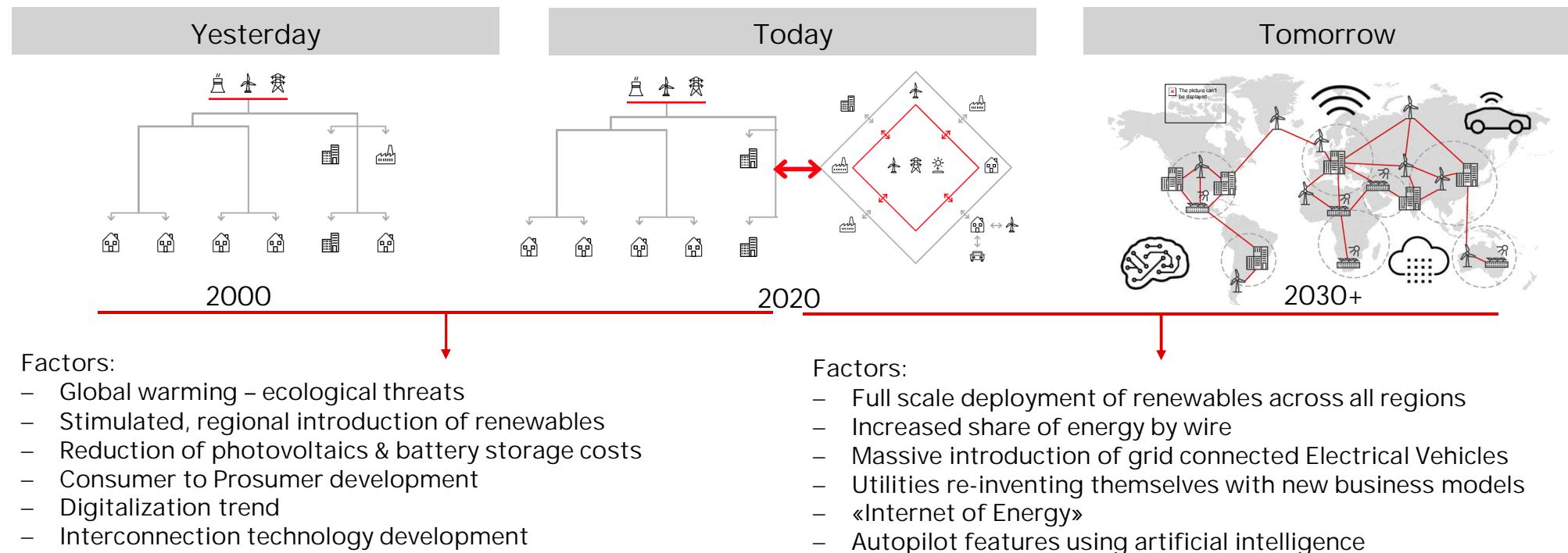
Not able to connect to the grid in case of overvoltage or undervoltage or if pollution emitted is too high

7 Railway

Non-compliance, penalties, frequent outages and downtime, reduced operational efficiency

8 Infrastructure

Penalties, frequent outages and downtime, reduced equipment life, potentially higher CO₂ emissions

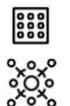

Power quality actual drivers & challenges

Power quality is under pressure from ...

Changes in the generation mix	Traditional industries/ demand	Digitalization and new load demands	Changes in the regulation
Increase level of renewables <ul style="list-style-type: none">• Lower system stability / reliability/inertia• Increased harmonics• Voltage stability issues From centralized to distributed <ul style="list-style-type: none">• More complex system controls• Microgrid deployments• Reverse flow issues Energy storage deployment <ul style="list-style-type: none">• Increased level of harmonics• More complex system controls• Energy support duration uncertainty	Heavy industries <ul style="list-style-type: none">• Arc furnaces causing:<ul style="list-style-type: none">• Large reactive power demand• Non compliance /penalties• Harmonic distortion Other industries <ul style="list-style-type: none">• Mills, variable speed drives, heavy motors causing:<ul style="list-style-type: none">• Poor power factor• Harmonics Railway systems <ul style="list-style-type: none">• AC and DC railways causing:<ul style="list-style-type: none">• Harmonics• Poor power factor• Poor load balance	E-mobility <ul style="list-style-type: none">• Spread location of chargers• Restrict feeder hosting capacity• 3-ph supply imbalance• Voltage sag during charging Expansion of data centres <ul style="list-style-type: none">• Increased harmonics• Grid reinforcement required• High reliability & dependability need Smart grids/cities <ul style="list-style-type: none">• Higher loads, harmonics and data flows from:<ul style="list-style-type: none">• Internet of things/smart homes• Smart cities/highways	New grid code requirements <ul style="list-style-type: none">• More stringent provisions for:<ul style="list-style-type: none">• Dynamic voltage control• Harmonics• Reactive power support TSO / DSO developments <ul style="list-style-type: none">• System operators develop new responsibilities / interfaces Share of market regulation costs <ul style="list-style-type: none">• Energy trading• Power factor correction• Harmonics mitigation

Power systems and markets of the future

Renewables, grid edge technologies and digitalization drive the evolution of future power systems


Power quality future drivers & challenges

Further renewable integration process

Larger Renewable integration

- Technology cost reduction
- Meet 2030 targets
- Further increase of related current issues

Substantial increase of DG and shut down of traditional plants

- Further reductions in system inertia/stability

Energy storage full deployment

- Improve renewables dispatching
- Ancillary Services market
- Power systems control interactions

Decarbonization process

Integration of RES at industrial

- Reduce CO2 emissions
- Impact on the industrial process – variability/ power factor / harmonics

E-mobility deployment

- Mass transportation electrification (trucks)
- Reverse flow issues with V2G

Railway systems

- SFC integration
- Energy storage deployment

Digitalization and new load demand

Demand side management

- Electrical equipment can be affected by power quality issues

Further Expansion of data centres

- Large power demand
- Remote locations with lower
- Green data centres

Further development of Smart grids/cities

- Demand increase
- Behind the meter generation

New regulation and developments

New grid code requirements

More stringent provisions for:

- New generation
- New load type
- Behind the meter regulation

TSO / DSO developments

- HV and MVDC grids
- New interconnections
- New principles for planning/operation

Affordability of power

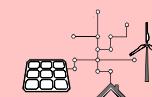
- Further pressure to lower consumer prices
- Use of system (UoS) charging mechanisms


Fundamentally new challenges for power systems

Coping with the increasing installation of wind energy

Volatile generation profile

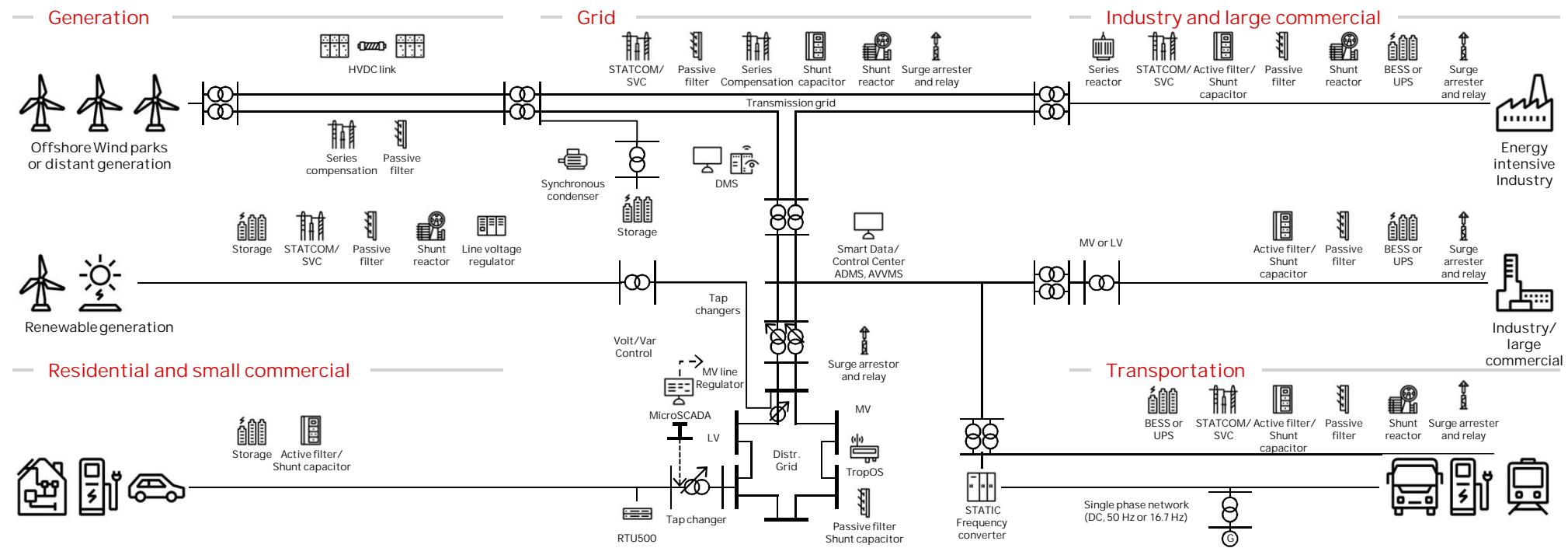
- Maximum output varies depending on wind and sunlight
- No perfect forecast available for wind and sunlight
- Most of the renewable energies have little to none base load capability


Inertial response capability

- Wind and solar installations are non-synchronous generation technologies that connect to grid via power electronics and have little or no inertial response capability

Location constrained

- Areas with the best resources are often situated in remote locations. Tapping into these resources will require efficient ways to transport a large amount of power over long distances


Modularity and distributed

- More production entities dispersed along the power system
- Increasing levels of distributed generation will require new approaches to regulate and manage the energy production and the power system

Renewable energies are the key drivers in the evolution of the power system

Power Quality technologies

Increased penetration of power electronics based generation and consumption influences the traditional power quality business

ABB and Power Quality

Unmatched knowledge, portfolio and experience

Site assessment

- Site audits
- Feasibility and system impact studies
- Assessment of assets and their contribution to power quality

Consulting

- Technical and economic analysis
- Business case and model definition
- Definition of functional requirements
- Project planning

Solution design

- Analysis of upgrade vs replacement strategies
- Asset life cycle evaluation
- Solution definition and selection of products

Solution delivery

- Project management and planning
- Products delivery and insourcing
- System engineering
- Deployment
- Commissioning and running acceptance tests

Software

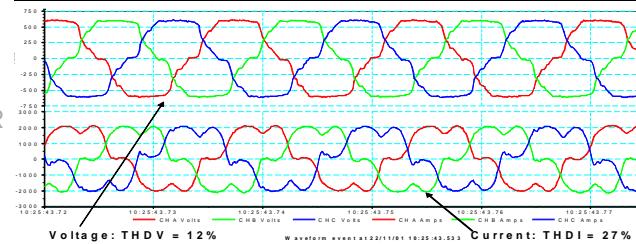
- Monitoring, protection and control equipment
- Cyber security analysis
- Gateways and SCADA system
- Voltage control applications
- Asset health center

Services

- Remote technical support
- Advanced technical experts
- Asset lifetime management
- Spare parts and replacements
- Training

ABB offers a broad portfolio of products, systems and services along the project execution

ABB offerings to enhance utility networks efficiency


Offering what the customers need

Measurement

AND/OR

Analysis

Solution

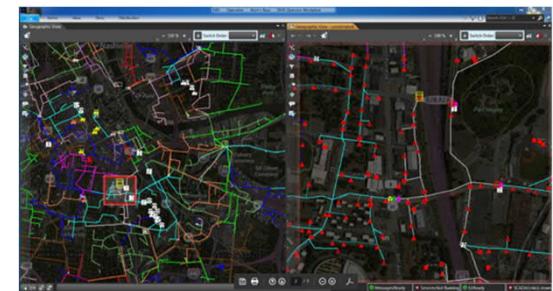
Products

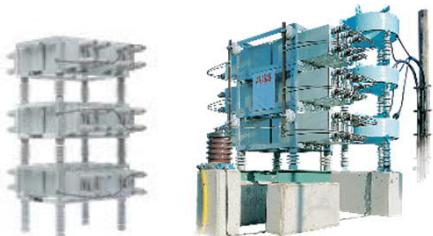
Service

Training

ABB offerings to enhance utility networks efficiency

Product portfolio overview


HVDC and FACTS


Switched capacitor banks

Volt-var management software

Fixed capacitor banks and filters

Variable shunt reactors

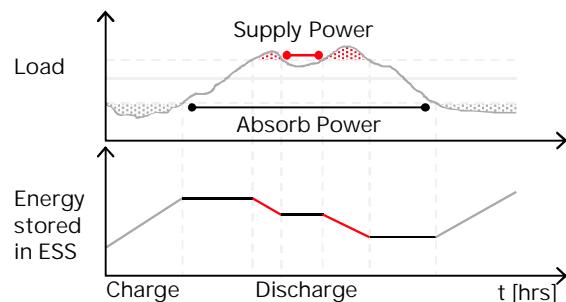
Capacitor accessories

—

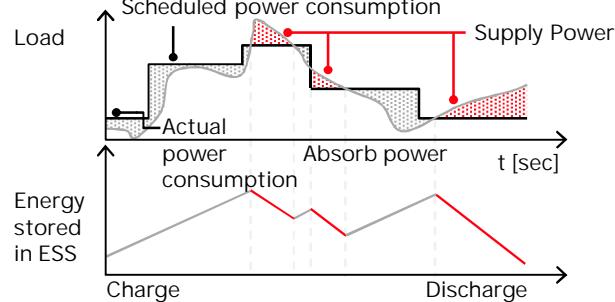
Power Quality

Technologies Highlights

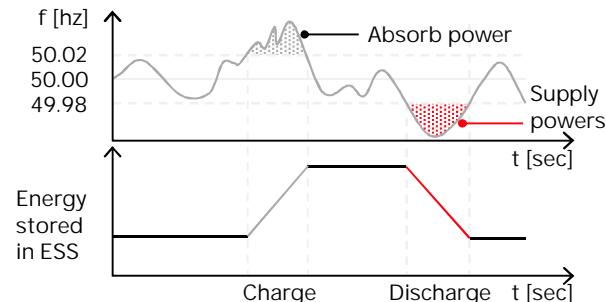
ABB offering for Power Quality

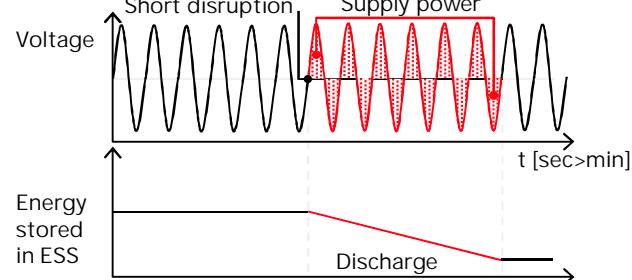

FACTS

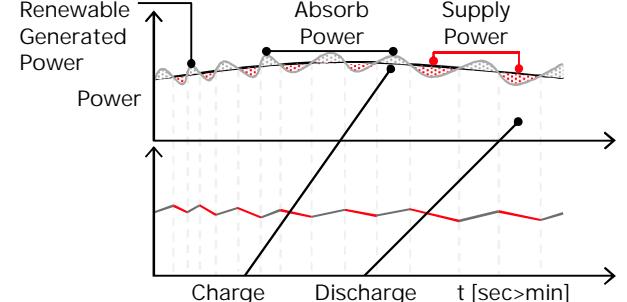
Solution benefit				
Fixed Series Compensation	Thyristor Controlled Series Compensation (TCSC)	SVC Classic	STATCOM (Hybrids)	Rail Static Frequency Converters (SFC)
<p>Cost effective solution to increase power transfer capability in transmission corridors instead of building new transmission lines</p> <ul style="list-style-type: none">Improved voltage and transient stabilityImproved voltage profile along the lines	<ul style="list-style-type: none">Provides damping torque on inter-area electromechanical oscillations (POD)Inherent immunity against sub synchronous resonance (SSR)Enhances capabilities for dynamic power flow controlOften the TCSC is combined with fixed series compensation to increase transient stability in the most cost effective way	<ul style="list-style-type: none">Improved voltage stability, facilitated integration of renewablesLoad balancingFlicker mitigation and power quality enhancementIncreased productivity by power factor improvement	<ul style="list-style-type: none">Similar benefits as for SVC ClassicMore robust integration in weak gridsHigh performance flicker mitigationReduced footprint thanks to fewer passive elements	<p>Active power in-feeding 3 phases-1 phase to 16.7/25 Hz, 50/60 Hz</p> <ul style="list-style-type: none">Full decoupling of gridsIndependent, fast control of frequencyVoltage, active and reactive power on both sidesConnection to weak grids
Series Compensation		Shunt Compensation		SFC

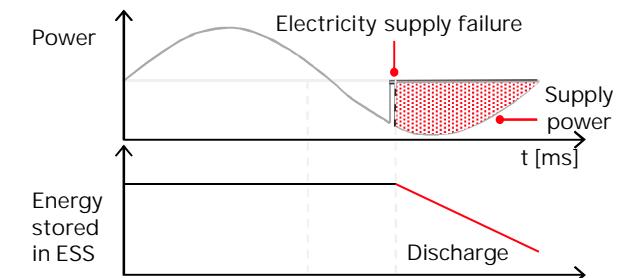

ABB offering for Power Quality

Advanced control algorithms enable applicability of BESS in every market segment


System adequacy


Energy resiliency

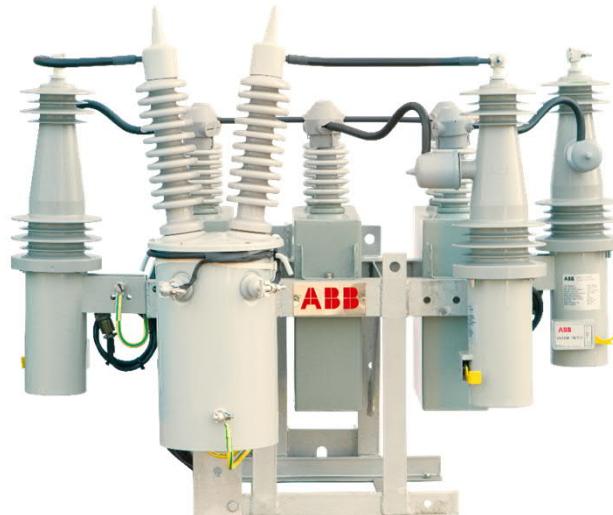

Ancillary services


Power quality

Integration of renewable resources

Energy storage systems

QPole Pole mounted capacitor bank


Features and benefits

Features:

- Can be mounted on pole or ground (pad mounting)
- Frame sizes available for 3, 6 and 9 capacitors
- Highly reliable vacuum switching
- Controller suitable for local as well as remote operations

Benefits:

- Capacitor connection and disconnection as per requirement
- Improved voltage profile along the network
- Feeder level compensation of reactive power
- Reduced losses, increased system capability

ABB