
MAXWELL PINTO, MSc, JORNADAS TECNICAS, JULY 2019

ABB High Voltage Direct Current

Applications of a Well-proven System

1

HVDC History

Reliable power to millions, for decades

2

Near Future of HVDC in South America

An overview

3

Skagerrak Project

A challenging history

4

Maritime project

The first bipolar HVDC Light solution

5

Conclusion

HVDC flexibility

HVDC history

A proven track record of innovation

1893

ABB starts providing power to the mining industry

1954

The world's first commercial HVDC link at Gotland, Sweden

1997

The world's first VSC HVDC installation

2013

Hybrid HVDC Breaker, solving a 100-year old technology puzzle enabling the DC-grids of the future.

2017

VSC HVDC highest performance ever – 3,000 MW, 640 kV, 2,000 km

1928

Dr Uno Lamm began developing HVDC in Ludvika, Sweden

1960s

Mercury arc valves replaced with thyristor semiconductor valves

2010

The world's first 800 kV UHVDC link at Xiangjiaba-Shanghai, China

2014

Complete 1,100 kV UHVDC system developed.

The Future

DC support in AC grids
DC grids

"The best way to predict the future is to create it"
- Abraham Lincoln

The Birth of HVDC

Gotland

First commercial HVDC
transmission in 1954
(100 kV, 20 MW)

Gotland – Swedish mainland

Cable length: 100 km

Case study

Itaipu

One of the largest HVDC transmissions in the world - two major ABB HVDC links that supply Sao Paulo.

6,300 MW
600 kV
1,590 km

Key facts

- The largest and most powerful HVDC transmission in the world for 20 years from 1990-2010.
- A considerable step forward in HVDC technology compared to the HVDC stations of the 1970s.

Case study

Rio Madeira

Integrating remotely located renewables, transmitting clean electricity, reliably and efficiently across a massive distance with minimum losses, to millions of consumers.

3,150 MW + 2x 400MW (BtB)
600 kV
2,375 km

Key facts

- Essential for the integration of vast hydro electric power from the Amazon Basin.
- Highly challenging remote location in the Amazon jungle.

Case study

North East Agra – ultrahigh-voltage DC, multi-terminal solution

The world's first ultrahigh-voltage multi-terminal HVDC link, a step towards a true DC grid.

6,000 MW
800 kV
1,775 km

Key facts

- Bulk 2-way transmission.
- Multi-terminal solution to integrate two generation locations.
- Minimum transmission corridor due to limited space.

Case study

Changji-Guquan – in execution

Due to set new world records on voltage level, transmission capacity and distance, supplying millions of people with reliable electricity.

12,000 MW
1,100 kV
3,000 km

Key facts

- ABB was the first to successfully develop and test the, world record breaking, 1,100kV converter transformer technology.
- Key in integrating remote renewables on a large scale and transmitting power over greater distances.

HVDC Classic LCC

Cost effective, bulk transmission (up to 12 GW+)

HVDC Classic from ABB:

- Low losses
- High reliability
- High availability
- World's largest greenfield project experience
- Extensive service and upgrade experience

Installed base

Over 120 projects and over 60 years experience

America

CU Upgrade	2019	Outaouais	2009	Chateauguay	1984
Maritime Link	2017	Sharyland	2007	Cu-project	1979
Quebec – New England Upgrade		Rapic City	2003	Nelson River 2	1978
Madawaska Upgrade	2016	Cross Sound	2002	Square Butte	1977
Celilo Upgrade	2016	Eagle Pass	2000	Eel River	1972
Railroad DC Tie	2016	Quebec – New England	1990	Pacific Intertie	1970
Oklauunion	2014	Pacific Intertie Expansion	1989	Vancouver Island Pole 1	1968
Mackinac	2014	Intermountain	1986		
IPP Upgrade	2014	Pacific Intertie Upgrade	1985		
Blackwater	2010	Madawaska	1985		
	2009	Highgate	1985		

South America

Rio Madeira Back-to-back	2013
Rio Madeira	2013
Brazil – Argentina	
Interconnection I & II	1999
Itaipu	1984

Africa

Inga – Kolwezi Upgrade	2016
Cahora Bassa, Songo	2015
Caprivi Link	2010
Apollo Upgrade	2008
Inga – Kolwezi	1982
Cahora Bassa	1977

Europe

North-sea Link	2021	Nordbalt	2015	Swepol	2000
Nordlink	2021	Litpol Link	2015	Gotland Light	1999
IFA2	2020	Skagerrak 4	2014	Hällsjön	1997
Kriegers Flak Cgs	2019	East West		Kontek	1995
Johan Svedrup	2019	Interconnector	2013	Baltic Cable	1994
Gotland Upgrade	2018	Sapei	2011	Fennoskan 1 & 2	1989
Caithness – Moray	2018	Valhall	2011	Dürnrohr	1983
Kontek Upgrade	2016	Norned	2008	Skagerrak 1-3	1976
Troll 1 & 2, 3 & 4	2015	Estlink	2006	Gotland 1-3	1970
Borwin 1	2015	Italy – Greece	2001	Konti-skan	1965
Dolwin 1, 2	2015	Tjæreborg	2000	English Channel	1955
Åland	2015				

Asia

Changji-Guquan	2019
Raigarh-Pugalur	2019
North East Agra	2016
Jinping – Sunan	2013
Mülünbeir – Liaoning	2010
Lingboa Li Extension	2010
Xiangjiba – Shanghai	2010
Three Gorges – Shanghai	2006
Vizag Li	2005
Three Gorges – Guangdong	2004
Three Gorges – Changzhou	2002
Chapad	1999
Rihand-Delhi	1990
Gezhouba – Shanghai	1989
Vindyachai	1989
Sakuma	1965

Australia and Oceania

Broken Hill	2013
Murraylink	2013
Directlink	
Leyte-Luzon	1999
New Zealand 1 & 2	1984

HVDC Light: 20 year of success!

Harmonic and Loss Reduction – Eliminating the Need for Harmonic Filters

Modulation principles

1997 – 2001

Two level converter

2002 – 2004

Three level converter

2005 – 2009

Two level converter,
optimized switching

2010 – 2015

Cascade two level converter

2016 –

Modular multi-level converter

Case study

Nordlink – in execution

Interconnecting grids using HVDC technology helping our customers reach their targets for a renewable energy mix.

1,400 MW
525 kV
623 km

Key facts

- VSC bipole HVDC
- Balances intermittent wind power in Germany with controllable hydropower in Norway.
- Most powerful HVDC Light® system in construction, joint with NordLink.

VSC HVDC Light®

Up to 640 kV and 3,500 MW

Your grid challenges, solved by HVDC Light:

Weak network?

- Black start power restoration
- Active/reactive power control (statcom functionality)
- AC voltage and frequency stabilization (increasing AC grid utilization)

Bi-directional power trade?

- Fast power reversal

Integration of renewables?

- Power, voltage and frequency control

VSC HVDC Light

ABB supplied 70% of all VSC links in the world

1

HVDC History

Reliable power to millions, for decades

2

Near Future of HVDC in South America

An overview

3

Skagerrak Project

A challenging history

4

Maritime project

The first bipole HVDC Light solution

5

Conclusion

HVDC flexibility

HVDC Installed Base

Brazil

HVDC Installed Base and Future Projects

South America

SAM in 2029

HVDC Future Projects

Brazil

HVDC Future Projects

Chile

3000 MW / ± 600 kV DC
To be in operation up to 2028

1

HVDC History

Reliable power to millions, for decades

2

Near Future of HVDC in South America

An overview

3

Skagerrak Project

A challenging history

4

Maritime project

The first bipole HVDC Light solution

5

Conclusion

HVDC flexibility

Skagerrak Project

A continuous evolution

General Information

- Connection between Kristiansand, Norway and Tjele, Denmark.
- The transmission system belongs to Statnett on the Norwegian side and to Energinet on the Danish side.
- Skagerrak 1 and 2 (SK 1 e SK 2) entered commercial operation in 1975/1976.
- Skagerrak 3 (SK 3) was commissioned in 1993.
- Skagerrak 4 (SK 4) is in operation since 2014.
- The distance between the substation is around 240 km.
- Hydroelectric power from Norway.
- Initially thermoelectric power from Denmark.
- Today Denmark has a considerable amount of windfarms.

Skagerrak Project

Connecting Norway and Denmark

Skagerrak 1 & 2

The first bipole

General Information

- Bipole with Line-Commuted Converters (LCC).
- Uses thyristor in the converters.
- Voltage of ± 250 kV DC (until Skagerrak 3).
- Current of 1000 A.
- Total power of 500 MW.
- 127 km submarine cables and 113 km overhead lines.
- Earth electrode on both sides.
- Commissioned in 1975/1976.
- Revitalized in 2007.

Skagerrak 1 & 2

The first bipole

Skagerrak 3

The third pole. Changes were needed...

General Information

- Monopole with LCC converter.
- Voltage of 350 kV DC.
- Current of 1430 A.
- Power capacity of 500 MW.
- 127 km submarine cable and 113 km overhead line.
- Commissioned in 1993.

But...

- No metallic return dedicated cable was built.
- There is a limitation to the amount of time the earth return can be used.
- The rated voltage, current and power for SK3 is different from SK 1 and 2.

How to operate the new system with a new pole with different specs?

Skagerrak 3 Adaptations

Before SK3

- SK1 and SK2 are two monopoles that form a bipole.
- SK1 and SK2 have different DC voltage polarities.
- SK1 and SK2 have DC currents flowing in opposite directions.

After SK3

- SK1 and SK2 have their converters in parallel and form a monopole.
- SK1 and SK2 have the same DC voltage polarity.
- SK1 and SK2 have their DC currents flowing in the same direction.

Skagerrak 3

The addition of a new pole

With Skagerrak 3

- SK3 operates with a DC voltage polarity to SK1 and SK2.
- SK3 has its DC current flowing in the opposite direction to SK1 and SK2.
- SK1 and SK2 operate as a monopole and, together with SK3, form a new bipole.

Skagerrak 3

With the new pole

From 1993 on....

- SK1 and SK2 operated with +250 kV DC e maximum current of 1000 A. The total power capability was 500 MW (250 MW per pole).
- SK3 operated with -350 kV DC and maximum current of 1430 A. The power capability was 700 MW.
- The new bipole has a total power capability of 1200 MW.
- Normally the power was distributed between the two poles so they had the same DC current in order to minimize the earth current.
- During the operation with full power, the current flowing to ground was 600 A.

Changes in the Danish System

Wind power: More changes were needed...

Norway

- The main energy source is hydroelectrical.

Denmark

- When SK1 and SK2 were commissioned, the Danish system had primarily thermal power sources.
- In the last decade, many windfarms have been built in the country.

Changes in the Danish System

Advantages of HVDC with renewable power

What was HVDC initially intended for?

- Initially the Skagerrak transmission system was designed for optimal economical energy dispatching among the two countries.
- Stabilization of the AC grids after contingencies.

What happened more recently?

- Wind generation in Denmark sometimes exceeds the consumption of the loads connected to it.
- The HVDC system compensates for swift variations in wind power and assures the balance between load and generation.
- Hydro power in Norway compensates for quick changes in windfarm output in Denmark.
- In some situations the active power in the HVDC link is inverted and Denmark exports energy to Norway.

Changes in the Danish System

The fourth pole

Why a forth pole?

- The need for an increase in the energy exchange capability between Norway and Denmark requires the construction of a new HVDC pole.

LCC or VSC?

- SK1, 2 and 3 are located electrically far away from big conventional generators.
- The LCC converters demand a minimum AC network short-circuit level to work properly.
- There are other two HVDC links (Norned and Konti-Skan) that are relatively close to Skagerrak and multi-infeed interactions might appear.
- Voltage and electromechanical stability problems may occur and synchronous condensers were installed in Norway to increase the short-circuit level.
- A new HVDC pole using LCC technology would require the installation of a few synchronous condensers in both the Norwegian and Danish systems.

Skagerrak 4

The VSC pole

Advantages of a Voltage Source Converter

- No need of new synchronous condensers.
- The reactive power exchange between the converter and the AC network is controlled.
- The VSC converters can be used to control the AC voltage of both networks.
- Great increase in AC system stability.
- Black start capability.

HVDC Light

System Configuration

Symmetric monopole

Positive

Low cost
Low transmission losses

Negative

Loss of 100 % power at trip

Asymmetric monopole

Positive

Only one high voltage cable
Bipole enabled

Negative

Less compact

Bipole

Positive

High Availability for half power

Negative

Temporary ground current (can be avoided at the expense of a metallic return conductor)

Skagerrak 4

Specifications

The new pole

- VSC converter – asymmetric monopole
- Rated DC voltage of + 500 kV.
- DC current of 1400 A.
- Rated active power of 700 MW.
- 140 km submarine cable and 104 km overhead line.
- Commissioned in 2014.

Final Configuration

Two bipoles

Since 2014....

- SK1 and SK2 operate once again as two poles of a bipole.
- SK3 and SK4 operate now as an hybrid bipole, as the first one is a LCC monopole and the second one is an asymmetric monopole with VSC technology.
- Both bipoles use the same earth electrode.
- SK3 and SK4 have different power ratings and rated DC voltages, but their rated DC currents are very similar, which results in low currents to ground.

Final Configuration

Two bipoles

Final Configuration

How flexible and HVDC transmission can be...

		Poles 1 & 2	Pole 3	Pole 4
Rated Power	MW	2 x 250	500	700
DC Voltage	kV	250	350	500
DC Current	A	1000	1430	1400
Converter Technology		LCC	LCC	VSC
AC Voltage (Kristiansand, NO)	kV	300	300	400
AC Voltage (Tjele, DK)	kV	150	400	400
DC Submarine Cables	km	127	127	140
DC Overhead Lines	km	113	113	-
DC underground Cables	km	-	-	104
Commissioning Year		1976 - 1977	1993	2014

1

HVDC History

Reliable power to millions, for decades

2

Near Future of HVDC in South America

An overview

3

Skagerrak Project

A challenging history

4

Maritime project

The first bipole HVDC Light solution

5

Conclusion

HVDC flexibility

Maritime Link

Canada

Main data

Customer	NSP Maritime Link (Emera)
Customer needs	<ul style="list-style-type: none">Integrate renewable generation into the North American grid
ABB's response	<ul style="list-style-type: none">Bipole HVDC Light solutionTwo 500 MW HVDC Light stationsTwo AC substations at 230 kVOne AC substation at 345 kV
Customer benefits	<ul style="list-style-type: none">Improved grid stabilityPower sharing enabled
Year	<ul style="list-style-type: none">2017

Maritime Link

Canada

Case study Maritime

Enabling clean, renewable electricity generated in Newfoundland and Labrador to be transmitted to the North American grid in Nova Scotia.

500 MW
200 kV
360 km

Key facts

- World's first VSC bipole HVDC interconnection overcoming unique control challenges.
- Demanding environment.
- Unique socio-economic and environmental requirements.

Case study

Nordlink – in execution

Interconnecting grids using HVDC technology helping our customers reach their targets for a renewable energy mix.

1,400 MW
525 kV
623 km

Key facts

- VSC bipole HVDC
- Balances intermittent wind power in Germany with controllable hydropower in Norway.
- Most powerful HVDC Light® system in construction, joint with NordLink.

1

HVDC History

Reliable power to millions, for decades

2

Near Future of HVDC in South America

An overview

3

Skagerrak Project

A challenging history

4

Maritime project

The first bipole HVDC Light solution

5

Conclusion

HVDC flexibility

Conclusion

HVDC Flexibility

HVDC systems are ideal for connecting renewable generations as they compensate for power fluctuations that are typical to this kind of energy source.

HVDC converters can adapt to different needs from the transmission grid in different stages of its lifespan which is perfect for a power generation system that will change over time.

ABB