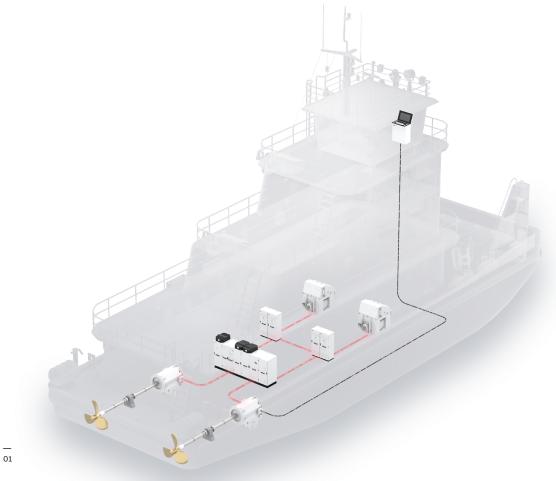


MARINE & PORTS | UNITED STATES

ABB Electric Towboat

Technical specifications


Table of contents

004	1600 HP
006	2400 HP
800	3200 HP
010	4000 HP
012	4800 HP

Technical specifications

01 Electric Towboat including scope of 2 generators

02 Single line drawing with scope of 2 generators

DG #1
565ekW
p.f. 0.8
480Vac

DG

VFD
480Vac

VFD
480Vac

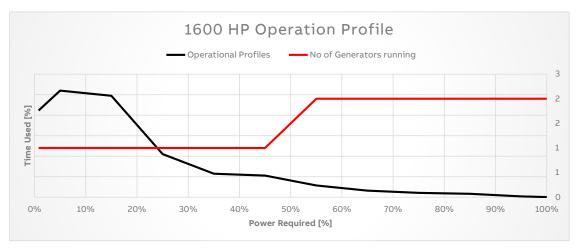
Distr. Trafo
75 kVA
TN-5
480/208V

Main Propulsion

Distr. Trafo
75 kVA
TN-5
480/208V

Main Propulsion

Distr. Trafo
75 kVA
TN-5
480/208V

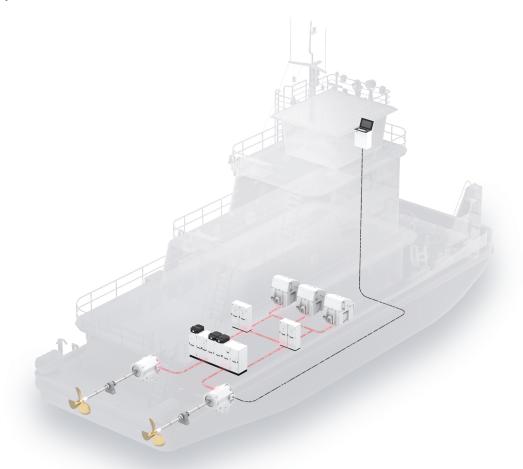

Main Propulsion

208/120Vac
Swbd B

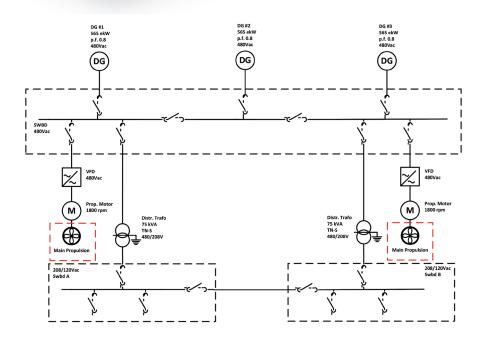
The operational profile shown is an actual profile provided by towboat owner based on a study of real river operations. It can be concluded that the true nature of push boat operation is not 100% continuous duty or anything close to it. The market requires equipment that performs day-in day-out in harsh environments, but operating profiles vary greatly but most of the time is spent at very low loads.

Power required [%]	Time used [%]	Number of generators running
100 %	0.04 %	2
90 - 100 %	0.20 %	2
80 - 90 %	0.83 %	2
70 - 80 %	1.06 %	2
60 - 70 %	1.61 %	2
50 - 60 %	2.88 %	2
40 - 50 %	5.28 %	1
30 - 40 %	5.74 %	1
20 - 30 %	10.51 %	1
10 - 20 %	24.72 %	1
0-10 %	25.99 %	1
Idle	21.14 %	1

Operational profile: usage of 2 generators

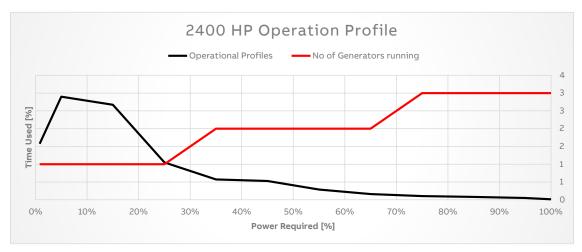

Output

OPER	ATIONAL COST CALCULATIONS		
Diese	Mechanical		
	Fuel	217 560	gallons
	UREA	0	gallons
	Running hours / Engine / Year	8 500	hrs
	Total engine running hours / Year	25 500	hrs
	Fuel* + UREA** - Cost / Year	\$435 119	dollars
Diese	Electrical (ABB ETB)		
	Fuel	162 058	gallons
	UREA	0	gallons
	Running hours / Engine / Year	4 528	hrs
	Total engine running hours / Year	9 056	hrs
	Fuel* + UREA** - Cost / Year	\$324 116	dollars
Advar	tages of ABB ETB		
	Fuel savings in % / Year	34.248 %	percent
	Fuel savings in \$ / Year	\$111 003	dollars
	Saved engine running hours / Year	16 444	hrs
	*Fuel co	ost per gallon	\$2 dollars
	**UREA cost per gallon \$2 dollar		


Technical specifications

01 Electric Towboat including scope of 3 generators

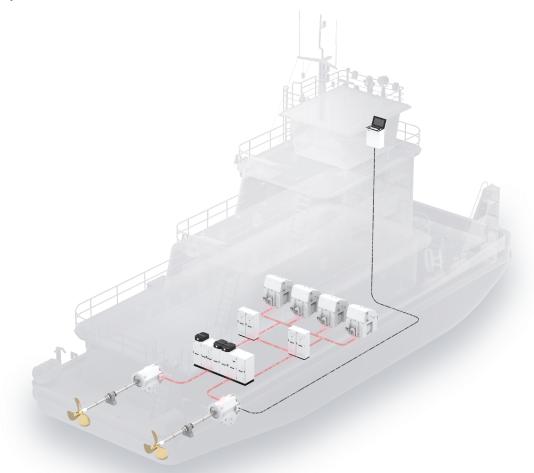
02 Single line drawing with scope of 3 generators


<u>—</u>

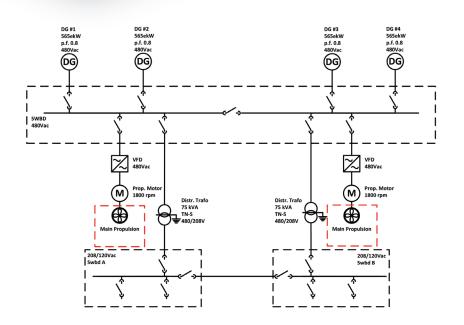
The operational profile shown is an actual profile provided by towboat owner based on a study of real river operations. It can be concluded that the true nature of push boat operation is not 100% continuous duty or anything close to it. The market requires equipment that performs day-in day-out in harsh environments, but operating profiles vary greatly but most of the time is spent at very low loads.

Power required [%]	Time used [%]	Number of generators running
100 %	0.14 %	3
90 - 100 %	0.50 %	3
80 - 90 %	0.83 %	3
70 - 80 %	1.06 %	3
60 - 70 %	1.61 %	2
50 - 60 %	2.88 %	2
40 - 50 %	5.28 %	2
30 - 40 %	5.74 %	2
20 - 30 %	10.51 %	1
10 - 20 %	26.72 %	1
0-10 %	28.99 %	1
Idle	15.74 %	1

Operational profile: usage of 3 generators

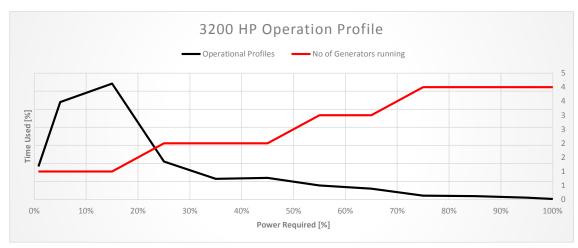

Output

OPERATIONAL COST CALCULATIONS				
Diesel M	1echanical			
	Fuel	272 281	gallons	
	UREA	12 808	gallons	
	Running hours / Engine / Year	8 500	hrs	
	Total engine running hours / Year	25 500	hrs	
	Fuel* + UREA** - Cost / Year	\$570 178	dollars	
Diesel E	lectrical (ABB ETB)			
	Fuel	221 382	gallons	
	UREA	0	gallons	
	Running hours / Engine / Year	3 404	hrs	
	Total engine running hours / Year	10 213	hrs	
	Fuel* + UREA** - Cost / Year	\$442 764	dollars	
Advanta	iges of ABB ETB			
	Fuel savings in % / Year	28.777 %	percent	
	Fuel savings in \$ / Year	\$127 414	dollars	
	Saved engine running hours / Year	15 287	hrs	
*Fuel cost per gallon \$2 dollars			\$2 dollars	
**UREA cost per gallon \$2 dollars			\$2 dollars	


Technical specifications

01 Electric Towboat including scope of 4 generators

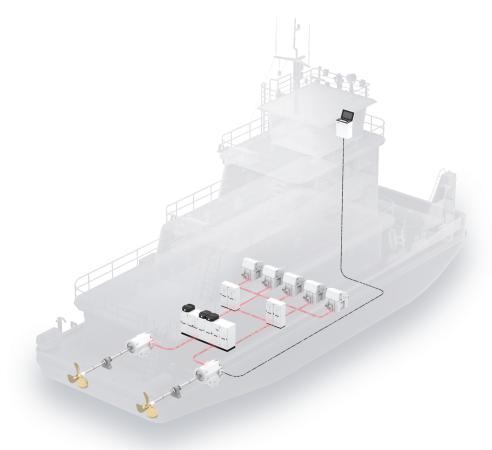
02 Single line drawing with scope of 4 generators


O1

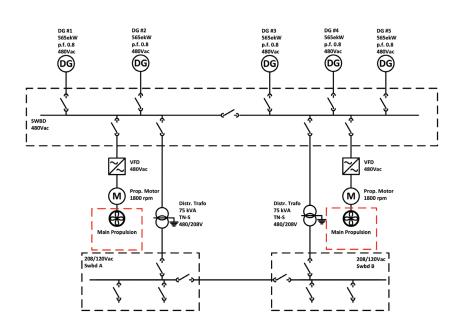
The operational profile shown is an actual profile provided by towboat owner based on a study of real river operations. It can be concluded that the true nature of push boat operation is not 100% continuous duty or anything close to it. The market requires equipment that performs day-in day-out in harsh environments, but operating profiles vary greatly but most of the time is spent at very low loads.

Power required [%]	Time used [%]	Number of generators running
100 %	0.14%	4
90 - 100 %	0.50%	4
80 - 90 %	0.93%	4
70 - 80 %	1.06%	4
60 - 70 %	3.01%	3
50 - 60 %	3.88%	3
40 - 50 %	5.98%	2
30 - 40 %	5.74%	2
20 - 30 %	10.52%	2
10 - 20 %	32.12%	1
0-10 %	26.99%	1
Idle	9.13%	1

Operational profile: usage of 4 generators


Output

OPERATIONAL COST CALCULATIONS					
Diesel Mecl	Diesel Mechanical				
	Fuel	319 197	gallons		
	UREA	15 154	gallons		
	Running hours / Engine / Year	8 500	hr		
	Total engine running hours / Year	25 500	hr		
	Fuel* + UREA** - Cost / Year	\$668 703	dollars		
Diesel Elect	trical (ABB ETB)				
	Fuel	307 844	gallons		
	UREA	0	gallons		
	Running hours / Engine / Year	3 046	hrs		
	Total engine running hours / Year	12 185	hrs		
	Fuel* + UREA** - Cost / Year	\$615 688	dollars		
Advantage	s of ABB ETB				
	Fuel savings in % / Year	8.611 %	percen		
	Fuel savings in \$ / Year	\$53 016	dollars		
	Saved engine running hours / Year	13 315	hrs		
	*Fuel o	ost per gallon	\$2 dollars		
	**UREA	ost per gallon	\$2 dollars		


Technical specifications

01 Electric Towboat including scope of 5 generators

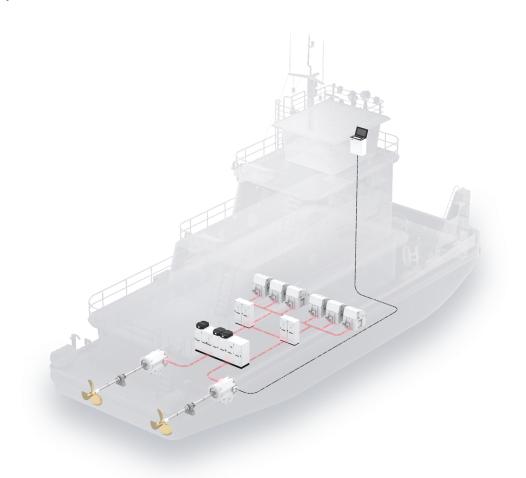
02 Single line drawing with scope of 5 generators


<u>__</u>

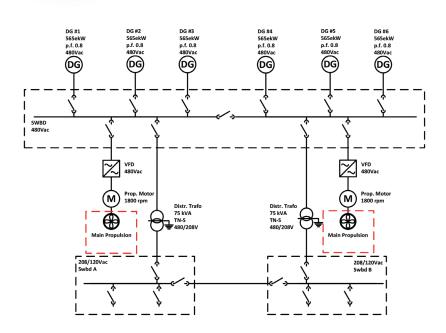
The operational profile shown is an actual profile provided by towboat owner based on a study of real river operations. It can be concluded that the true nature of push boat operation is not 100% continuous duty or anything close to it. The market requires equipment that performs day-in day-out in harsh environments, but operating profiles vary greatly but most of the time is spent at very low loads.

Power required [%]	Time used [%]	Number of generators running
100 %	0.14%	5
90 - 100 %	0.50%	5
80 - 90 %	0.93%	5
70 - 80 %	1.06%	4
60 - 70 %	3.01%	4
50 - 60 %	3.88%	3
40 - 50 %	5.98%	3
30 - 40 %	5.74%	2
20 - 30 %	10.52%	2
10 - 20 %	32.12%	1
0- 10 %	26.99%	1
Idle	9.13%	1

Operational profile: usage of 5 generators

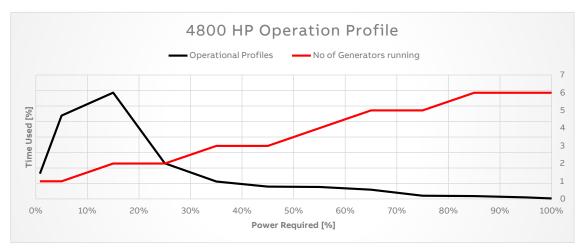

Output

OPERATIONAL COST CALCULATIONS				
Diesel Mechanical				
	Fuel	540 265	gallons	
	UREA	26 208	gallons	
Running hours / Eng	ine / Year	8 500	hrs	
Total engine running ho	urs / Year	25 500	hrs	
Fuel* + UREA** - Co	ost / Year	\$1 132 945	dollars	
Diesel Electrical (ABB ETB)				
	Fuel	371 674	gallons	
	UREA	0	gallons	
Running hours / Eng	ine / Year	2 614	hrs	
Total engine running ho	urs / Year	13 070	hrs	
Fuel* + UREA** - Co	ost / Year	\$743 347	dollars	
Advantages of ABB ETB				
Fuel savings in	n % / Year	52.411 %	percent	
Fuel savings i	n \$ / Year	\$389 598	dollars	
Saved engine running ho	urs / Year	12 430	hrs	
*Fuel cost per gallon \$2 dollars				
**UREA cost per gallon \$2 dollars				


Technical specifications

01 Electric Towboat including scope of 6 generators

02 Single line drawing with scope of 6 generators


<u>__</u>

The operational profile shown is an actual profile provided by towboat owner based on a study of real river operations. It can be concluded that the true nature of push boat operation is not 100% continuous duty or anything close to it. The market requires equipment that performs day-in day-out in harsh environments, but operating profiles vary greatly but most of the time is spent at very low loads.

Time used [%]	Number of generators running
0.17%	6
0.50%	6
0.92%	6
1.05%	5
3.01%	5
3.87%	4
3.98%	3
5.63%	3
11.52%	2
34.32%	2
26.89%	1
8.14%	1
	0.17% 0.50% 0.92% 1.05% 3.01% 3.87% 3.98% 5.63% 11.52% 34.32% 26.89%

Operational profile: usage of 6 generators

Output

OPERATIONAL COST CALCULATIONS Diesel Mechanical				
	UREA	25 655	gallons	
	Running hours / Engine / Year	8 500	hrs	
	Total engine running hours / Year	25 500	hrs	
_	Fuel* + UREA** - Cost / Year	\$1 109 736	dollars	
Diesel El	ectrical (ABB ETB)			
	Fuel	437 102	gallons	
_	UREA	0	gallons	
_	Running hours / Engine / Year	2 831	hrs	
	Total engine running hours / Year	16 986	hrs	
	Fuel* + UREA** - Cost / Year	\$874 205	dollars	
Advanta	ges of ABB ETB			
	Fuel savings in % / Year	26.942 %	percent	
	Fuel savings in \$ / Year	\$235 531	dollars	
	Saved engine running hours / Year	8 514	hrs	
	*Fuel c	ost per gallon	\$2 dollars	
**UREA cost per gallon \$2 dollars				

ABB Inc.

11600 Miramar Parkway, Suite 100 33025 Miramar, FL, USA

ABB Inc.

3700 W Sam Houston Pkwy S, Houston, 77042, Texas, USA

abb.com/marine