Forecast 2023: AI will enable the vision of a digitalized process industry

In process industries, the vision for AI is, integrated digital operations that create better outcomes. Such systems would have self-configuring, self-managed, self-adaptive, self-protective, and self-healing abilities, almost like the human nervous system that controls multiple functions and seamlessly adapts to changes in the body or the environment.

Share this page

Originally published in Indiaai.gov.in article Dec 2022

Sanjit Shewale

VP, Global Head of Digital, Process Industries Division at ABB

Sanjit joined ABB in December 2020 as the Head of Digital for Process Industries, primarily focused on Global Digital Strategy and Sustainability. He has 25 years of experience in advanced industrial software and automation across many verticals, including energy, process, and discrete manufacturing. Before joining ABB, Sanjit worked for Honeywell Process Solutions, Danaher Product Identification, and Stelco Ironmaking businesses in different roles. He holds a Bachelor’s degree in Chemical Engineering from McMaster University and a Master’s degree in Management Sciences from the University of Waterloo, both from Canada.

Integrated digital operations that create better outcomes – the vision for AI in the process industry

Process industries have always been driven by technological advances, bringing complex integrated systems each decade, and adding intelligence. While the internet of things (IoT) was a revolutionary concept once, today, it is a reality. Additionally, the potential of artificial intelligence (AI), machine learning (ML), and advanced data analytics have set the industry firmly on the path of digitalization. Several business imperatives necessitate this – the focus on de-carbonization and sustainability, the need to comply with environmental, social, and governance (ESG) regulations, and to maximize profitability. 

In process industries, the vision for AI is, integrated digital operations that create better outcomes. Such systems would have self-configuring, self-managed, self-adaptive, self-protective, and self-healing abilities, almost like the human nervous system that controls multiple functions and seamlessly adapts to changes in the body or the environment. 

Plant owners can use AI solutions for energy-saving and emission reductions to enhance plant performance, reduce capital costs, standardize environmental practices, or enforce safety. 

However, despite AI's enormous potential to reshape the industry, uptake is delayed due to the gap in transparency and trust. While an AI suggesting what TV show to watch is easy to accept, those that make critical decisions, such as in the medical diagnosis, or creditworthiness, make people demand transparency into how the decision was made. Without the ability to explain the models or the 'AI,' they may not be accepted into general operations. Growing regulation, such as GDPR, also demands data processing and AI transparency. AI makes it possible for users to understand and accept decisions. The ability to discover, control, and justify are all interconnected. 

The process industry is in a flux, struggling to realize AI's value while accepting its possibilities. As per a Gartner study, by 2024, 50% of AI investments will be quantified and linked to specific key performance indicators to measure return on investment. It makes AI significant in defining the use cases, gaining acceptance, and realizing business value. In successful deployments of AI in process industries, sensors deployed for condition monitoring are optimally placed by engaging with the on-ground environment, the people, and the work processes. This human-machine teaming raises confidence levels in AI and is a critical factor in usability, translating into value through lower costs, optimized maintenance, increased safety, sustainability improvements, or enhanced productivity. 

AI is key to improving sustainability through energy management in process industries.

Climate change is driving governments and industries world-over to reduce emissions and achieve net zero as quickly as possible. In this, AI and ML can be game changers. In process industries, hitting KPIs and sustainability targets by manual adjustment alone is impossible. AI-based digital solutions that rely on IoT devices, data analytics, and AI and ML-based applications have much to offer.  

Optimizing energy management, for example, contributes heavily to emissions reduction. Data-driven AI solutions manage the optimization, including energy mix planning, consumption and conversion, emission control, and regulatory compliance. In a steel plant with an annual capacity of up to five million tonnes of steel, complex distribution networks for electricity, steam, by-product gases, and imported fuels account for as much as 20% of production costs. Deploying a digital energy management system optimizes production scheduling, throughput, quality, energy-related costs, raw material usage, and emissions.  

Further opportunities to reduce emissions are utilizing energy-rich waste gasses that are by-products from metal production to be consumed by other parts of the process or to generate power via captive power plants. This can be fine-tuned by monitoring generation and consumption across plant facilities in real-time. Data is collected from multiple systems to compare allocation with actual consumption, provide real-time demand and supply calculations, balancing, benchmark, and optimal distribution, as well as forecasts based on production plans and historical data modeling. Root cause analysis is applied when a gap occurs between supply and demand. Complementing these management systems with data contextualization and digital twins allows operators to optimize energy consumption. 

Fine-tuning productivity through AI in multi-variable processes

Digital solutions can align sustainability goals, and productivity targets for process industries, especially those have high risk to human operators. In processes such as cement manufacturing, plant operators are concerned about deviating from regulatory emission levels regarding harmful gasses. The variables make manual controls challenging, needing operators to work at safe distances, compromising productivity and profitability. Using advanced process control (APC), cement manufacturers constantly tweak the production process to an optimum state, standardizing operations, minimizing variations, and enhancing productivity. APC technology has evolved with new features and embraced the potential of AI. With advanced analytics, AI, and reinforcement learning from the neural network, processes can be further automated so that the performance and accuracy of the models are monitored, and analytics provides new models for the controller. This will reduce engineering time and allow the system to stay at peak performance, maximizing profitability for cement producers while reducing emissions. 

The age of industrial IoT is now; AI will be critical in leapfrogging process industries to the next level.

Global pressures such as sustainability, energy efficiency, safety, and transparency are reshaping the ecosystem for heavy industrial processes. While AI and ML are buzzwords today, there is no doubt that adopting AI and ML is the way forward. AI allows engineers to accept a working model that aligns the real world with the digital. Reverse-engineering the realities of industrial operations using AI will enable trust and create competencies needed to realize the future vision for process industries - where integrated digital operations create better outcomes and take people along. 
  • Contact us

    Submit your inquiry and we will contact you

    Contact us
Select region / language