Reliable and real-time measurements
For those involved in upstream oil and gas, the possibility of performing multiphase flow measurements provides obvious benefits. Bonavita continues: "In reality, hydrocarbons are not produced through the extraction of a single-phase flow, but rather a multi-phase flow where there is usually a binary liquid phase (oil and water) present as well as a gaseous phase (gas), as well as any sand or solid particles in suspension. This mixture is usually conveyed to a treatment plant under which there are multiple wells in multiple areas and at whose entrance there is a special unit dedicated to the separation of the three phases, which occurs substantially due to gravity.
Once the three phases are separated, the corresponding flow rates are measured using traditional methods and instruments. Measuring the three phases downstream of the separator, however, involves several limitations, because these measurements are available with considerable delay times and provide an average value that is obviously averaged over all the contributions coming from the various wells. Therefore, this type of measurement cannot be used for the purposes of monitoring and optimization of production of individual production areas.
The situation may be further complicated if the gas (or oil) processing unit receives incoming flows from areas managed by different companies, in which case it is clearly also necessary to resolve the problems of allocation of costs, profits and liabilities.
It is precisely in these situations that multi-phase meters assume a key role; these products are able to provide the same type of information as a conventional test separator, but with the advantages arising from the ability to obtain real-time flow-rate measurements, combined with a much more compact size.
By its nature, VIS provides maximum performance precisely in the most difficult applications for traditional multi-phase flow meters, where the gas volume fraction is extremely high. In technical terms, we refer to the GVF (Gas Volume Fraction); the closer the GVF is to 100 %, the more problematic the accurate measurement of the three phases becomes. The VIS measurement system, on the other hand, is designed precisely to better manage these challenges and has no problems, even when the volumetric percentage of liquid drops below 1 % or even 1 ‰.
The tool can also be applied successfully in gas storage fields. Thanks to its particular design, it can provide bi-directional and very accurate real-time measurements of biphasic fluids during production. This can be very useful, because it enables extractions from the tanks to be optimized, minimizing the water content present in the gas"