Hardwood fibers are short and thin, giving better paper formation than softwood fibers. They also give paper a smooth printing surface and high opacity. In addition, because there is somewhat less lignin in hardwood compared to softwood, it is also easier to bleach the hardwood pulp to a high brightness.
These qualities make hardwood very suitable for use in printing papers, although these grades generally consist of a blend of hardwood and softwood pulps to meet the combination of strength and the printing surface demands of the customer.
Hardwoods have a more complex structure than softwoods, with different cells for water transport and support. Elongated libriform fibers function for support and are thick-walled in proportion to the diameter. Shorter, wider cells called “vessels” are responsible for water transportation.
Geographical differences
In Scandinavia, the growth period is short but intense, particularly in the most northern areas. It lasts from May to September-October, and then growth is idle during wintertime. It takes about 75 years for a Scandinavian spruce or pine to be ready to harvest, compared to a pine in the southern U.S., where it only takes 25 years for the tree to be ready to harvest. This is due to the warm climate all year round. And in Brazil it takes only about seven years for a eucalyptus tree to be ready to harvest when grown on a plantation.
Pulp fibers can be extracted from almost any vascular plant found in nature, but a high yield of fibers is necessary to make the process economical. Today, globally about 90% of the fibers used for papermaking are wood fibers. The rest is produced from non-wood fibers like bagasse (sugarcane), straw and bamboo.
Chemical composition
Wood mainly consists of three types of materials: Cellulose, hemi-cellulose and lignin. The relative composition in the wood varies in different species of trees.
Cellulose is the main component of the fiber. It is a straight-chain carbohydrate polymer composed of glucose units and is the structural material on which the fiber is built. Cellulose is insoluble in most solvents, and it is resistant to the action of most chemicals except strong acids. Cellulose is also very important to paper properties because the attraction between cellulose molecules on different fiber surfaces is the principal source of fiber-to-fiber bonding in paper to give strength.